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Abstract
We study an online learning framework intro-
duced by Mannor and Shamir (2011) in which
the feedback is specified by a graph, in a set-
ting where the graph may vary from round to
round and is never fully revealed to the learner.
We show a large gap between the adversarial
and the stochastic cases. In the adversarial case,
we prove that even for dense feedback graphs,
the learner cannot improve upon a trivial re-
gret bound obtained by ignoring any additional
feedback besides her own loss. In contrast, in
the stochastic case we give an algorithm that
achieves Θ̃(

√
αT ) regret over T rounds, pro-

vided that the independence numbers of the hid-
den feedback graphs are at most α. We also
extend our results to a more general feedback
model, in which the learner does not necessarily
observe her own loss, and show that, even in sim-
ple cases, concealing the feedback graphs might
render a learnable problem unlearnable.

1. Introduction
Online learning is a general framework for sequential
decision-making under uncertainty. In its most basic form,
it can be described as follows. A learner has to iteratively
choose an action from a set of K available actions, and
suffer a loss associated with that action. The losses of the
actions on each round are assigned in advance by an arbi-
trary, possibly adversarial, environment. The learner’s goal
is to minimize her regret over T rounds of the game, which
is the difference between her cumulative loss and that of
the best fixed action in hindsight.

After making each decision, the learner receives some form
of feedback about the losses. Traditionally, the literature
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considers two types of feedback: full feedback (Little-
stone and Warmuth, 1994; Vovk, 1990; Cesa-Bianchi et al.,
1997), where the learner observes the losses associated
with all of her possible actions, and bandit feedback (Auer
et al., 2002b), where the learner only observes the loss of
the action she has actually taken.

Full feedback and bandit feedback are special cases of
a general framework introduced by Mannor and Shamir
(2011), in which the feedback model is specified by a se-
quenceG1, . . . , GT of feedback graphs, one for each round
t of the game. Each feedback graph Gt is a directed graph
whose nodes correspond to the learner’s K possible ac-
tions; a directed edge u → v in this graph indicates that
whenever the learner chooses action u on round t, in ad-
dition to observing the loss of action u, she also gets to
observe the loss associated with the action v on that round.

Online learning with feedback graphs was further stud-
ied by several authors. Alon et al. (2013), and subse-
quently Kocák et al. (2014); Alon et al. (2015), gave
regret-minimization algorithms that achieve Õ(

√
αT ) re-

gret, where α is a bound on the independence numbers of
the graphs G1, . . . , GT . Up to logarithmic factors, their
results recover and interpolate between the classic bounds
of O(

√
T logK) with full feedback (Freund and Schapire,

1997) and O(
√
KT ) with bandit feedback (Auer et al.,

2002b; Audibert and Bubeck, 2009). The Õ(
√
αT ) bound

turns out to be tight for any feedback graph (when it is fixed
throughout the game and known in advance), in light of a
matching lower bound due to Mannor and Shamir (2011).

However, all of the optimal algorithms mentioned above
require the full structure of the feedback graph in order to
operate. While some require the entire graph Gt for per-
forming their updates only at the end of round t (e.g., Alon
et al., 2013; Kocák et al., 2014; Alon et al., 2015),1 oth-
ers actually need the description of Gt at the beginning of
the round before making their decision (e.g., Alon et al.,

1More precisely, these algorithms do not need the entire graph
but rather the incoming neighborhood of each of the actions for
which the associated loss has been observed.
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2014). In fact, none of the algorithms previously proposed
in the literature is able to provide non-trivial regret guaran-
tees without the feedback graphs being disclosed.

The assumption that the entire observation system is re-
vealed to the learner on each round, even if only after mak-
ing her prediction, is rather unnatural. In principle, the
learner need not be even aware of the fact that there is a
graph underlying the feedback model; the feedback graph
is merely a technical notion for us to specify a set of obser-
vations for each of the possible actions. Ideally, the only
signal we would like the learner to receive following each
round is the set of observations that corresponds to the ac-
tion she has taken on that round (in addition to her own
loss).

As a motivating example for situations where receiving the
entire observation system is unrealistic, consider the fol-
lowing online pricing problem that faces any vendor sell-
ing goods over the internet. On each round, the seller has
to announce a price for his product. Then, a buyer ar-
rives and decides whether or not to purchase the product
at this price based on his private value; the only feedback
the seller receives is whether or not the buyer purchased the
product at the announced price. However, when a purchase
takes place, the seller also knows that the buyer would have
bought the product at any price lower than the price that she
announced. While this feedback structure can be thought
of as a directed graph over the seller’s actions (i.e., prices),
the graph itself is never fully revealed to the seller as its
structure discloses the buyer’s private value.

1.1. Our contributions

In this paper, we study online learning with feedback
graphs in a setting where the feedback graphs are never
revealed to the learner in their entirety. That is, in this set-
ting the only feedback available to the learner at the end
of round t is the out-neighborhood of her chosen action
in the graph Gt, along with the loss associated with each
of the actions in this neighborhood and the loss of the ac-
tion that she chose. We address the following questions:
how this lack of full disclosure affects the learner’s regret?
Is it possible to achieve any non-trivial regret guarantee in
this setting, i.e., one that improves on the trivial O(

√
KT )

bound? In particular, can we obtain bounds that scale with
the independence numbers of the feedback graphs?

Our main results show that not knowing the entire feed-
back graphs can have a significant impact on the learner’s
achievable regret. First, we show that in a standard ad-
versarial online learning setting, where we assume noth-
ing about the process generating the losses and the feed-
back graphs (i.e., both are possibly chosen by an adver-
sary), any strategy of the learner must suffer Ω(

√
KT ) re-

gret in the worst case, even if the independence numbers of

G1, . . . , GT are all bounded by some small absolute con-
stant. Namely, by hiding the feedback graphs from the
learner, the problem surprisingly becomes as hard as theK-
armed bandit problem, even when the feedback available to
the learner is “almost full”: each of the feedback graphs is
“almost a clique.” In other words, the side observations
received by the learner are effectively useless; she may as
well ignore them and use a standard bandit algorithm such
as EXP3 (Auer et al., 2002b) to perform optimally.

Second, and in contrast to the adversarial setting, we show
that in a stochastic setting where the losses of each action
are known to be drawn i.i.d. from some unknown proba-
bility distribution, side observations can still be very use-
ful. We show that the learner is able to achieve an opti-
mal regret bound of the form Õ(

√
αT ), even if the graphs

G1, . . . , GT are chosen adversarially and are never fully
revealed to the learner, as long as their independence num-
bers are all bounded by α. We give an efficient elimination-
based algorithm achieving this bound, that does not require
knowing the value of α in advance. This result is optimal
up to logarithmic factors, even when the feedback graph is
fixed throughout the game and known in advance, due to a
lower bound of Mannor and Shamir (2011).

For our algorithm in the stochastic case, we also prove
a distribution-dependent regret bound that scales logarith-
mically with T . The bound we prove is of the form
O(
∑
v∈V ′(1/∆v) log T ), where ∆v is the gap of action

v, and V ′ is the subset of Õ(α) actions with smallest
gaps. This bound is a substantial improvement over stan-
dard regret bounds of stochastic multi-armed bandit algo-
rithms such as UCB (Auer et al., 2002a): whereas the re-
gret of the latter algorithms is typically bounded by a sum∑
v∈V (1/∆v) taken over all K actions, the sum in our

bound is taken only over the subset of Õ(α) actions with
the smallest gaps. This result cannot be improved even
when the feedback graph is fixed throughout the game, and
has an optimal dependence on α as well as on the gaps ∆v ,
thus resolving an open question of Alon et al. (2014).

Finally, we extend our results to a more general feedback
model recently studied by Alon et al. (2015), in which
the learner does not necessarily observe her own loss af-
ter making predictions (namely, each action may or may
not have a self-loop in each feedback graph). Alon et al.
(2015) gave a necessary and sufficient condition for attain-
ing Θ(

√
T ) regret in this more general model—a graph-

theoretic condition they call strong observability. The ex-
tension of our results to their model bears some surprising
consequences: even in the strongly observable case with
only two actions, not revealing the entire feedback graphs
to the learner might make the problem unlearnable! Never-
theless, in the case of stochastic losses, our positive results
do extend to the more general feedback model.
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1.2. Additional related work

Online learning with feedback graphs was previously con-
sidered in the stochastic setting by Caron et al. (2012), who
gave results depending on the graph clique structure. Their
analysis, however, only applies when the feedback graph is
fixed throughout the game, and can only bound the regret
in terms of a quantity akin to the clique-partition number
of this graph, which is always larger than its independence
number (the gap between the two can be very large; see
Alon et al., 2014).

More recently, Wu et al. (2015) and Kocák et al. (2016)
have investigated a noisy version of the feedback graph
model, where feedback is specified by a weighted di-
rected graph with edge weights indicating the quality (e.g.,
the noise level or variance) of the feedback received on
adjacent vertices. Wu et al. (2015) provided finite-time
problem-dependent lower bounds for this setting; Kocák
et al. (2016) generalized the notion of independence num-
ber to the noisy case and gave new efficient algorithms in
this setting.

2. Setup and Main Results
We consider a general online learning model with graph-
structured feedback, which can be described as a game be-
tween a learner and an environment that proceeds for T
rounds. Before the game begins, the environment privately
determines a sequence of loss functions `1, ..., `T : V 7→
[0, 1] defined over a set V = {1, ...,K} of K actions,
which we view as a sequence of loss vectors `1, ..., `T ∈
[0, 1]K . In addition, the environment fixes a sequence of
directed graphs G1, . . . , GT over V as vertices.

We will consider two different cases, that we refer to as the
adversarial setting and the stochastic setting:

• In the adversarial setting, the loss vectors `1, ..., `T and
the feedback graphs G1, . . . , GT are chosen by the en-
vironment in an arbitrary way.

• In the stochastic setting, the environment privately se-
lects a loss distribution D over [0, 1]K and an arbi-
trary sequence G1, . . . , GT ; thereafter, the loss vectors
`1, . . . , `T are sampled i.i.d. from D.

Iteratively on rounds t = 1, 2, ..., T , the learner randomly
chooses an action vt ∈ V and incurs the loss `t(vt). At
the end of each round t, the learner receives a feedback
comprised of {(v, `t(v)) : (vt → v) ∈ Gt)}, that includes
the loss `t(vt) incurred by the learner (i.e., we assume that
(v → v) ∈ Gt for all t and v ∈ V ). In words, the learner
observes the losses associated with vt and the actions in
the out-neighborhood of vt in the feedback graph Gt. The
feedback graph Gt itself is never revealed in its entirety to
the learner.

The goal of the learner throughout the T rounds of the game
is to minimize her expected regret, which is defined as

RT = E

[
T∑
t=1

`t(vt) −
T∑
t=1

`t(v
?)

]
, (1)

where v? = minv∈V E[
∑T
t=1 `t(v)] is the best action in

hindsight. Here, the expectations are taken over the random
choices of the learner and, in the stochastic setting, also
over the randomness of the losses.

For the stochastic setting we require additional notation.
For each v ∈ V , we denote by µ(v) the mean of the loss of
action v under D. We denote µ? = µ(v?), and let ∆v =
µ(v) − µ? for all v ∈ V . We refer to ∆v as the gap of
action v, and assume for simplicity that v? is unique so that
∆v > 0 for all v 6= v?.

For stating our results, we need a standard graph-theoretic
definition. An independent set in a graph G = (V,E) (ei-
ther directed or undirected) is a set of vertices that are not
connected by any edges. Namely, S ⊆ V is independent if
for any u, v ∈ S, u 6= v, it holds that (u → v) /∈ E. The
independence number α(G) of G is the size of the largest
independent set in G.

2.1. Main results

We now state the main results of this paper. Our first result
deals with the adversarial case and shows that when the
feedback graphs are not revealed to the learner at the end
of each round, her regret might be very large even when
the independence numbers of the graphs are small—they
are all bounded by a constant.

Theorem 1. In the adversarial setting, any online learning
algorithm must suffer at least Ω(

√
KT ) regret in the worst

case, even when all feedback graphs G1, . . . , GT have in-
dependence numbers ≤ O(1).

The lower bound in the theorem is tight: it can be matched
by simply running a standard bandit algorithm (e.g., EXP3
of Auer et al., 2002b), ignoring all observed feedback be-
sides the loss of the action played.

Our next result shows that in the stochastic case, the learner
is still able to attain non-trivial regret despite the fact that
the feedback graphs are never fully revealed to her.

Theorem 2. In the stochastic setting, Algorithm 1 de-
scribed in Section 4 attains an expected regret of at most
Õ(
√
αT ), provided that the independence numbers of the

feedback graphs G1, . . . , GT are all bounded by α.

This regret bound is optimal up to logarithmic factors, since
the lower bound of Ω(

√
αT ) found in Mannor and Shamir

(2011) applies in our stochastic setting.
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In the stochastic setting we also give a distribution-
dependent analysis of Algorithm 1 which depends on the
gaps of the actions under the distribution D.

Theorem 3. In the stochastic setting, Algorithm 1 de-
scribed in Section 4 attains an expected regret of

O

(∑
v∈V ′

1

∆v
log T

)
,

where V ′ is the set of Õ(α) actions with the smallest gaps
(excluding v?), provided that the the independence num-
bers of the graphs G1, . . . , GT are all bounded by α.

We also extend our results to a more general class of feed-
back graphs, in which each vertex may or may not have a
self-loop. For the statements of these additional results, see
the full version of the paper (Cohen et al., 2016).

2.2. Discussion of the results

Our results show that there is a large gap between the
achievable regret rates in the adversarial and stochastic set-
tings, in terms of the dependence on the properties of the
feedback graphs.

In the adversarial case, the environment is free to simulta-
neously choose the sequences of loss values and feedback
graphs in conjunction with each other; for example, they
can be drawn from a joint distribution over sequences of
loss values and sequences of directed graphs. The envi-
ronment may use this freedom to manipulate the feedback
observed by the learner and bias her observations in a ma-
licious way. In the stochastic setting, on the other hand, the
loss values are drawn from the underlying distribution only
after the environment commits to some arbitrary sequence
of graphs, so that the feedback graphs are probabilistically
independent of the realizations of the losses.

In fact, as our arguments in Section 3 reveal, there exists
a randomized construction of loss vectors and feedback
graphs that inflicts Ω(

√
KT ) on any learner, in which the

loss vectors are i.i.d. However, the stochastic process that
generates the feedback graphs in that construction is corre-
lated with the actual realizations of the i.i.d. losses. This
is a crucial aspect of our construction, as implied by our
upper bound in the stochastic case.

3. Lower Bound for Adversarial Losses
In this section we deal with the adversarial setting and
prove Theorem 1: we show an Ω(

√
KT ) lower bound on

the performance of any online learning algorithm, where
both the losses of the actions and the feedback graphs can
be chosen arbitrarily. In fact, our result relies heavily on
the fact that the two can be behave in a correlated manner.

u 6→ v? u→ v?

`t(v
?) = 0 2ε 1

2 − ε
1
2 + ε

`t(v
?) = 1 0 1

2 − ε
1
2 − ε

2ε 1− 2ε

u 6→ v u→ v

`t(v) = 0 ε 1
2 − ε

1
2

`t(v) = 1 ε 1
2 − ε

1
2

2ε 1− 2ε

Figure 1. Summary of the joint distribution of the loss of action v?

and an edge between u and v? (top), and of the joint distribution
of the loss of action v 6= v? and an edge between u and v (bot-
tom). The grayed-out entries indicate probabilities that cannot be
estimated by the learner; the remaining entries do not permit the
learner to distinguish between v? and v.

Let us sketch the idea behind the lower bound. By Yao’s
minimax principle, in order to prove a lower bound on the
learner’s regret it is enough to demonstrate a randomized
strategy for the environment that forces any deterministic
learner to incur Ω(

√
KT ) regret. We construct our envi-

ronment’s strategy as follows.

First, before the game begins, the environment chooses an
action v? uniformly at random from V . At each round,
the loss of all actions v 6= v? is distributed Bernoulli(1/2),
while the loss of action v? is distributed Bernoulli(1/2 −
ε) with ε = (1/8)

√
K/T . All of the loss values in the

construction are drawn independently of each other.

The feedback graphs G1, . . . , GT are chosen i.i.d. from the
following distribution. Any edge u→ v for v 6= v? appears
with probability 1− 2ε independently from all other edges
and the losses of the actions. Edges of the form u → v?

appear mutually independently given the loss of action v?:
if the loss of v? is 1, each edge appears with probability
1; if the loss of v? is 0, each edge appears with probability
(1− 2ε)/(1 + 2ε). See Figure 1 for a summary of the edge
probabilities in this construction. The idea behind the
construction is as following. Suppose that the learner plays
some action u 6= v?, the distributions of the observed losses
of every other actions are identical, including that of v?. In
other words, her only option of finding v? is by sampling
it directly and observing its loss. Hence, the construction
is capable of simulating a K-armed bandit problem whose
minimax regret is Ω(

√
KT ).

For the construction above we prove the following theorem.

Theorem 4. Assume that K ≥ 2 and T ≥ K2. Any deter-
ministic learner must suffer an expected regret of at least
(1/32)

√
KT against the environment constructed above.
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To prove the theorem, we shall need a few definitions. Let
P,Q be a couple of distributions over the same space and
sigma-algebraF . We define the total variation distance be-
tween P and Q as DTV(P , Q) = supE∈F |P[E]−Q[E]|.
If P and Q are discrete distributions, we define the
KL divergence between P and Q as DKL(P ‖Q) =∑
x log (P[x]/Q[x])P[x] assuming the support of P is con-

tained in that of Q, and where the sum is taken over the
support of P. We can now turn to the proof of the theorem.

Proof of Theorem 4. Let us introduce the random variables
Tv whose value is the number of times the learner plays ac-
tion v. We also introduce the notations Pv and Ev indicat-
ing probability and expectation with respect to the marginal
distributions under which v? = v. Then, we have

RT = E

[
T∑
t=1

`t(vt)−
T∑
t=1

`t(v
?)

]

=
1

K

∑
v∈V

Ev

[
T∑
t=1

`t(vt)−
T∑
t=1

`t(v)

]

=
1

K

∑
v∈V

ε · Ev[T − Tv]

= ε

(
T − 1

K

∑
v∈V

Ev[Tv]

)
, (2)

and in order to proceed we shall upper bound Ev[Tv].

Introduce a new distribution, in which the losses of the
actions are independent Bernoulli(1/2) variables, and the
feedback graphs are such that each directed edge appears
with probability 1 − 2ε independently of the other edges
and the losses of the actions. We will refer to this new law
using P0 and E0. Let λt be the losses and edges observed at
time t, and similarly λ(t) = (λ1, ..., λt) are the losses and
edges observed up until time t (inclusive). Then, since the
sequence λ(T ) determines the actions of the learner over
the entire game, and by Pinsker’s inequality,

Ev[Tv]− E0[Tv] ≤ T ·DTV

(
Pv[λ(T )] , P0[λ(T )]

)
≤ T

√
1
2DKL

(
P0[λ(T )]

∥∥Pv[λ(T )]
)
. (3)

Moreover, by the chain rule of KL-divergence,
DKL

(
P0[λ(T )]

∥∥Pv[λ(T )]
)

equals

T∑
t=1

∑
λ(t−1)

P0[λ(t−1)]DKL

(
P0[λt|λ(t−1)]

∥∥∥Pv[λt|λ(t−1)]
)
.

(4)

Consider a single term in the sum. Recall that λ(t−1) de-
termines the action vt chosen by the learner on round t.
If vt 6= v then, by our construction, the losses and edges

of the graph observed by the learner are distributed ex-
actly the same under Pv and P0, and the KL divergence
is 0. If vt = v then the losses of all other actions are
distributed Bernoulli(1/2), and independently of the loss
of action v and the observed edges. The latter is so un-
der both Pv and P0. Moreover, the observed edges are
distributed Bernoulli(1 − 2ε) independently of the loss of
action v under both Pv and P0. Namely, the only el-
ement that is distributed differently under Pv and P0 is
the loss of action v, and the latter is distributed inde-
pendently from all other observed variables. Recall that
the loss of action v is distributed as Bernoulli(1/2) un-
der P0 and as Bernoulli(1/2 − ε) under Pv . Therefore,
DKL

(
P0[λt|λ(t−1)]

∥∥Pv[λt|λ(t−1)]
)

is upper-bounded by

DKL

(
1

2

∥∥∥∥ 1

2
− ε
)

= −1

2
log(1− 4ε2) ≤ 4ε2 ,

where the last inequality holds since ε < 1/4 by assump-
tion. Plugging the above back into Eq. (4),

DKL

(
P0[λ(T )]

∥∥∥Pv[λ(T )]
)
≤

T∑
t=1

P0[vt = v]4ε2

= 4ε2E0[Tv] ,

and the latter into Eq. (3), we get that Ev[Tv] ≤ E0[Tv] +
Tε
√

2E0[Tv].

Now, K ≥ 2 by assumption, and therefore

1

K

∑
v∈V

Ev[Tv] ≤
1

K

∑
v∈V

E0[Tv] +
1

K

∑
v∈V

Tε
√

2E0[Tv]

≤ 1

K

∑
v∈V

E0[Tv] + Tε

√
1

K

∑
v∈V

2E0[Tv]

=
T

K
+ Tε

√
2T

K

≤ T

2
+ Tε

√
2T

K
.

Let us now return to Eq. (2). We can lower bound the regret
as

RT ≥ ε

(
T − T

2
− Tε

√
2T

K

)
= εT

(
1

2
− ε
√

2T

K

)
.

By our choice of ε, we have that ε
√

2T/K is at most 1/4,
and so

RT ≥
T

8

√
K

T

(
1

2
− 1

4

)
=

1

32

√
KT ,

as claimed.
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To show that Theorem 1 holds, we need to show that the
learner suffers a large regret against an environment that
selects feedback graphs with constant independence num-
bers. While the independence numbers of the graphs that
we have constructed might, in principle, be large, we can
show that with very high probability they are uniformly
bounded by a constant.

Lemma 5. Suppose that |V | = K ≥ 2 and T ≥ K2. Let
G1, ..., GT be a sequence of graphs as constructed above.
With probability at least 1−ε/8, the independence numbers
of all graphs are at most 9.

Theorem 1 now follows by combining Theorem 4 and
Lemma 5; for technical details, see Cohen et al. (2016).

4. Algorithms for Stochastic Losses
In this section we present and analyze our algorithm for
the stochastic setting. The algorithm, given in Algo-
rithm 1, is reminiscent of elimination-based algorithms
for the stochastic multi-armed bandit problem (e.g., Even-
Dar et al., 2002; Karnin et al., 2013). For this algorithm,
we prove the following guarantee on the expected regret,
which implies Theorem 2.

Theorem 6. Assume that K ≥ 2. Suppose that Algo-
rithm 1 is run on a sequence of feedback graphs with in-
dependence numbers ≤ α. Then the expected regret of the
algorithm is at most Õ(

√
αT ).

Algorithm 1 works in phases r = 1, 2, . . .. It maintains
a subset of actions Vr, where initially V1 = V . At each
phase r, the algorithm estimates the mean losses of all ac-
tions in Vr to within εr accuracy, by invoking a procedure
called ALPHASAMPLE nr times. It then filters out from Vr
the actions that are known to be 2εr-suboptimal with suf-
ficient confidence, and repeats this process, decreasing the
accuracy parameter εr after each phase.

The key for achieving optimal regret lies in the the proce-
dure ALPHASAMPLE, that appears as Algorithm 2. Each
call to this procedure allows us to observe the losses of
all actions in Vr once, while spending only Õ(α) rounds
in expectation. The exact details of ALPHASAMPLE are
discussed in Section 4.2 below, and here we just state its
guarantee.

Lemma 7. ALPHASAMPLE returns one sample of the loss
of each action in Vr and terminates after at most 10α logK
rounds of the game in expectation, provided that the inde-
pendence numbers of all feedback graphs G1, . . . , GT are
at most α.

To prove Theorem 6 we need one additional lemma. It
shows that, at each phase, the elimination procedure of the
algorithm succeeds with high probability. Namely, after

Algorithm 1
input Set V of K actions, number of rounds T
initialize r ← 1, V1 = V , ε1 = 1/4
while |Vr| > 1 and T rounds have not elapsed do

Set nr = d2 log(2KT )/ε2re
Invoke ALPHASAMPLE(Vr) for nr times, and

compute empirical mean mr(v) of each action
v ∈ Vr using collected samples

Compute m?
r = minv∈Vr mr(v)

Eliminate actions:
Vr+1 = {v ∈ Vr : mr(v) ≤ m?

r + 2εr}
Set εr+1 = εr/2, r ← r + 1

end while
Play the action left in Vr until T rounds have passed

phase r, the algorithm is left with actions that are at most
4εr-suboptimal.

Lemma 8. For all r, with probability at least 1 − 1/T we
have µ(v) ≤ µ? + 4εr for all v ∈ Vr+1.

We can now proceed with the proof of the theorem.

Proof of Theorem 6. Let us start by bounding the number
of phases R the algorithm makes. Let the random variable
Tr denote the number of game rounds elapsed during phase
r. Since the algorithm runs for T rounds we must have that

R∑
r=1

Tr ≤ T . (5)

In particular, since ALPHASAMPLE takes at least one round
to complete, we have that Tr ≥ nr ≥ 2 log(2KT )4r+1 and
we get the crude bound of

R ≤ r̄ =
1

2
log2

(
3T

32 log(2KT )
+ 1

)
. (6)

We turn to bound the expected regret of the algorithm. By
Lemma 8 and the union bound, the total probability of fail-
ure of the mean estimations is at most r̄/T . Then the ex-
pected regret of the algorithm is at most the expected regret
conditioned on the success of the estimation of the means
plus (r̄/T ) · T = r̄ = O(log T ) by Eq. (6), and since the
regret is bounded by T with probability 1. Thus it remains
to bound the regret conditioned on the success of the mean
estimations.

For convenience, define ε0 = 1/2. On phase r, by
Lemma 8 we have an instantaneous regret of at most
4εr−1 = 8εr per round. If only one action is left in Vr then
it must be v? and therefore after the final phase the algo-
rithm suffers zero instantaneous expected regret. Overall,
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the expected regret is at most

E

[
R∑
r=1

Tr · 8εr

]
≤ 8

√√√√E

[
R∑
r=1

Tr

]
·

√√√√E

[
R∑
r=1

Trε2r

]

by the Cauchy-Schwartz inequality. Note that
∑R
r=1 Tr ≤

T by Eq. (5). Additionally, by Lemma 7 each call to AL-
PHASAMPLE spends at most m = 10α logK rounds in
expectation and thus E[Tr] ≤ mnr. Hence,

E

[
R∑
r=1

Trε
2
r

]
≤

r̄∑
r=1

mnrε
2
r ≤ mr̄(2 log(2KT ) + 1) .

The first inequality holds since the number of phases is at
most r̄. The right-hand side is O(α log(K) log2(KT )) by
Eq. (6) and the definition of m.

4.1. Gap-based analysis

We can also provide a distribution-dependent analysis of
Algorithm 1 that yields a logarithmic regret bound, albeit
with an explicit dependence on the gaps ∆v .

Denote by V (n) the set of n actions with smallest gaps, ex-
cluding v? and breaking ties arbitrarily. Our main result
in this section is the following theorem, which gives The-
orem 3. Recall that we assume v? is the unique optimal
action, and so the gaps of all other actions are positive.

Theorem 9. Suppose that K ≥ 2 and T ≥ K, and let
τ = d10α logKe. Suppose that Algorithm 1 is run on a
sequence of feedback graphs with independence numbers
≤ α. Then the expected regret of Algorithm 1 is at most

O

 ∑
v∈V (τ)

1

∆v
log T

 .

We can explain the intuition behind the bound as follows.
Each call to ALPHASAMPLE spends at most Õ(α) rounds
while producing samples of all K actions. Thus, in the
worst case, after a quick pruning phase the algorithm is left
with the “hardest” τ = Õ(α) actions and has to tell them
apart; in this last phase, the additional observations pro-
vided by the feedback graphs might not help the algorithm
at all (e.g., the remaining τ actions might form an indepen-
dent set in all graphs). We now turn to the proof of the
theorem.

Proof of Theorem 9. As in the proof of Theorem 6, we
have that the expected regret of the algorithm is at most
the expected regret conditioned on the success of the mean
estimations plusO(log T ), and thus it remains to bound the
regret conditioned on the success of the mean estimations.

Conditioned on the success of the algorithm, the regret of
the algorithm is at most the regret of an algorithm that has
finished running with Vr = {v?}. Thus we can assume that
T is large enough for that to happen.

If τ ≤ K − 1, we begin by bounding the regret until the
algorithm eliminates all actions besides the ones in V (τ).
Let ∆̄ be the largest gap of an action from V (τ). Let r̄ =
blog2(2/∆̄)c. Thus, it takes r̄ + 1 phases in order for εr
to be less than ∆̄/4. The regret up to round r̄ is bounded
using the following lemma.

Lemma 10. Let m = 10α logK. The expected regret of
Algorithm 1 up to round r̄ is at most (128m/∆̄) log(2KT ).

We proceed with the analysis of the expected regret after
phase r̄. This is given by this next lemma.

Lemma 11. The expected regret of Algorithm 1 from
round r̄ + 1 until the end of the game is at most∑
v∈V (τ)(128/∆v) log(2KT ).

If τ > K − 1 then the regret of the algorithm is given by
Lemma 11. Otherwise, the proof of the theorem is com-
pleted by noticing that the regret of the algorithm up to
round r̄ is at most the regret from round r̄ + 1 thereafter.
Since ∆̄ ≥ ∆v for all v ∈ V (τ) we get that

m

∆̄
≤ m

|V (τ)|
∑

v∈V (τ)

1

∆v
≤

∑
v∈V (τ)

1

∆v
,

by definition of m and V (τ). This in total gives a regret
bound of O(

∑
v∈V (τ) ∆−1

v log(KT )). Finally, we use our
assumption that T ≥ K to simplify the bound.

Proof of Lemma 10. By Lemma 7, each call to AL-
PHASAMPLE spends at most m rounds in expectation.
By Lemma 8, the instantaneous regret for each round on
phase r is at most 4εr−1 = 8εr. Then the expected
regret up to round r̄ is at most

∑r̄
r=1m · nr · 8εr ≤

32m log(2KT )
∑r̄
r=1 ε

−1
r , and we have

r̄∑
r=1

1

εr
=

r̄∑
r=1

2r+1 ≤ 2r̄+2 ≤ 4

∆̄
.

Proof of Lemma 11. Let us denote r̄v = blog2(2/∆v)c,
the number of phases until v is removed from Vr. Let w
be the action with the minimum nonzero gap. We shall as-
sume that the game is finished after r̄w phases.

Note that after we have eliminated all actions not in V (τ),
each call to ALPHASAMPLE is finished after at most |Vr|
steps. Thus, the expected regret for the remaining phases is
at most
r̄w∑

r=r̄+1

32 log(2KT )

εr
|Vr| = 32 log(2KT )

∑
v∈V (τ)

r̄v∑
r=r̄+1

1

εr
,
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and for all v ∈ V (τ),
∑r̄v
r=r̄+1 ε

−1
r ≤

∑r̄v
r=0 2r+1, which in

turn equals 2r̄v+2 ≤ 4/∆v .

4.2. Efficient sampling scheme

In this section, we discuss the ALPHASAMPLE randomized
sampling procedure. This procedure allows us to collect
one sample of the loss for each action while spending only
Õ(α) rounds in expectation. ALPHASAMPLE is described
in Algorithm 2.

Let us now explain the intuition behind the procedure. At
each round, the procedure samples the loss of an action uni-
formly at random from a subset of actions U . As each sam-
ple is uniform over U , the procedure observes the losses
of Ω(|U |/α) actions in expectation. The actions that have
been observed are then removed from U and the process
continues recursively until U is empty. This phase is com-
plete after an expected Õ(α) rounds.

The main result regarding ALPHASAMPLE is the following
theorem, from which Lemma 7 would follow immediately
(see Cohen et al., 2016).

Theorem 12. Algorithm 2 returns one sample of the loss of
each action in U and terminates after at most 4α log(K/δ)
rounds with probability at least 1 − δ, provided that all
graphs G1, . . . , GT have independence numbers ≤ α.

To analyze the number of rounds that the algorithm spends,
we shall define the following random process. Consider an
infinite sequence U1, U2, ... such that U1 = U . For every
r > 0, if Ur is not empty we sample an action uniformly
at random from Ur, and we let Ur+1 be Ur after removing
the actions whose losses were observed. Otherwise, we let
Ur+1 be the empty set.

The following lemma lower bounds the expected number
of actions whose losses are observed at each iteration of
the process.

Lemma 13. Let r > 0. Let N be the number of actions
seen when sampling uniformly at random from Ur. Then,
E[N |Ur] ≥ |Ur|/(2α).

The main tool used in the proof of the lemma is the fol-
lowing version of Turán’s theorem (see, e.g., Alon and
Spencer, 2008).

Theorem 14 (Turán). Let G = (V,E) be an undirected
graph and α be the independence number of G. Then,

α ≥ |V |
1 + 2|E|/|V |

.

Proof of Lemma 13. Fix some feedback graph G = (V,E)
with independence number ≤ α, and let dout(v) be the out-
degree of vertex v. Note that the independence number of

Algorithm 2 ALPHASAMPLE

input Set of actions U ⊆ V
initialize S ← ∅
while |U | > 0 do

Play an action u ∈ U uniformly at random,
and let W (u) be the set of actions observed

Collect samples of losses of each w ∈W (u) into S
Update U ← U \W (u)

end while
return S

the subgraph over U can only decrease, namely it is also at
most α. As such, we shall think of dout(v) as the out-degree
of v in the subgraph.

We would like to apply Turán’s theorem to the subgraph,
which is a directed graph. We do so by constructing an
undirected version of the subgraph, namely one in which
we ignore the orientation of the edges. Note that the num-
ber of edges in the undirected version can only decrease.
Therefore,

E[N |Ur] = 1 +
1

|Ur|
∑
v∈Ur

dout(v) = 1 +
|E|
|Ur|

≥ |Ur|
2α

,

where the inequality follows from Turán’s theorem (Theo-
rem 14).

Proof of Theorem 12. By the construction of the random
process, the probability that Algorithm 2 spends more than
t rounds of the game is exactly the probability that Ut+1 is
not empty. To bound this probability we claim that for any
r > 0,

E[|Ur+1|] ≤ K exp
(
− r

2α

)
. (7)

Indeed, fix some i > 0. By Lemma 13 we have that

E[|Ui+1||Ui] = |Ui| − E[N |Ui] ≤ |Ui|
(

1− 1

2α

)
.

Taking expectation with respect to Ui and then applying
this argument recursively, we get that

E[|Ur+1|] ≤ |U1|
(

1− 1

2α

)r
≤ K exp

(
− r

2α

)
.

Now, let t1 = b2α log(K/δ)c + 1. We will show that
the probability that Ut1+1 is not empty is at most δ. By
Markov’s inequality and Eq. (7),

P[|Ut1+1| > 0] ≤ E[|Ut1+1|]
≤ K exp(−t1/(2α))

< δ .

To conclude, with probability at least 1 − δ, the num-
ber of rounds that the algorithm spends is at most t1 ≤
4α log(K/δ), since K ≥ 2 by assumption.
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