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Abstract

We revisit the study of optimal regret rates in bandit combinatorial optimization—a fun-
damental framework for sequential decision making under uncertainty that abstracts nu-
merous combinatorial prediction problems. We prove that the attainable regret in this
setting grows as rΘpk3{2

?
dT q where d is the dimension of the problem and k is a bound

over the maximal instantaneous loss, disproving a conjecture of Audibert, Bubeck, and
Lugosi (2013) who argued that the optimal rate should be of the form rΘpk

?
dT q. Our

bounds apply to several important instances of the framework, and in particular, imply a
tight bound for the well-studied bandit shortest path problem. By that, we also resolve an
open problem posed by Cesa-Bianchi and Lugosi (2012).

1. Introduction

We consider the problem of online combinatorial optimization with bandit feedback, also
known as bandit combinatorial optimization, or more succinctly as combinatorial bandits.
The problem can be described as the following game between a learner and an environment,
that proceeds for T rounds. On each round t “ 1, 2, . . . , T , the learner has to pick, possibly
at random, an action xt from a subset S Ď t0, 1ud of the hypercube in d-dimensions, with
the property that each element x P S has at exactly k non-zero entries, that is

řd
i“1 xi “ k.

Simultaneously, the environment privately chooses a loss vector `t P r0, 1s
d. The learner

then incurs the loss `t ¨ xt P r0, ks and may observe only this loss (but not the vector `t) as
feedback. The goal of the learner throughout the T rounds of the game is to minimize her
regret, defined as

T
ÿ

t“1

`t ¨ xt ´ min
xPS

T
ÿ

t“1

`t ¨ x .

Bandit combinatorial optimization is a fundamental primitive of sequential decision
making under uncertainty, and abstracts several major problems in this context (see, e.g.,
Bubeck and Cesa-Bianchi, 2012). Perhaps the most important and well-studied problem
captured by this framework is online network routing, also known as the online shortest
path problem (Takimoto and Warmuth, 2003; Kalai and Vempala, 2005). In this setting,
a source station s repeatedly sends communication packets to a target station t through a
network represented by a connected directed acyclic graph. On each decision round, the
environment associates each edge in the network with a loss, and the learner suffers the
loss accumulated over the edges in her chosen path. Each packet can be routed differently
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and the station has to pick routes so as to minimize the overall amount of time it takes the
packets to arrive. In the bandit version of the problem, the only feedback that the source
station observes is the roundtrip time of each packet—namely the time it takes the packet
to travel to its destination and return to the source.

The network routing problem can be cast in the online combinatorial optimization frame-
work as follows: the set of all s-t paths can be represented as a set S Ď t0, 1ud where d
is the number of edges in the graph, and the non-zero entries in each x P S indicate the
edges that are contained in the path x; then, if `t P r0, 1s

d is the loss vector that associates
costs to edges in the network on decision round t, then the cost of path x is given by `t ¨ x.
The assumption that

řd
i“1 xi “ k for all x P S means that the length of an s-t path in the

network is exactly k (which is also an upper bound on the maximal cost of any s-t path).
The study of bandit combinatorial optimization dates back to the work of Awerbuch

and Kleinberg (2004), who considered the online shortest path problem in the bandit set-
ting, henceforth called the bandit shortest path problem, in which the learner observes only
the loss that she has suffered, and showed an Opkd5{3T 2{3q bound on the expected regret.
Dani et al. (2008) and Abernethy et al. (2008) considered the problem in the wider con-
text of bandit linear optimization and established a regret bound with the optimal

?
T

dependence. Subsequently, Cesa-Bianchi and Lugosi (2012) focused on bandit combinato-
rial optimization, and showed that a similar bound can be achieved for a large number of
problems under this framework, often with computationally efficient algorithms. For the
bandit shortest path problem, Cesa-Bianchi and Lugosi (2012) conjectured that the general
upper bound is in fact suboptimal and that the correct tight bound is of the form rOpk

?
dT q,

and could be obtained by a clever adaptation of their algorithm.
More recently, Bubeck et al. (2012); Audibert et al. (2013) showed that an rOpk3{2

?
dT q

upper bound holds for any combinatorial bandit problem using a general online optimization
algorithm. Additionally, the authors gave a new lower bound of Ωpk

?
dT q on the expected

regret in combinatorial bandits, which leaves a gap of
?
k between that and their upper

bound (ignoring logarithmic factors). They conjectured as well that the lower bound is, in
fact, the correct rate and articulated that the upper bound could be improved by non-trivial
modifications of the existing algorithmic techniques.

In this paper, we revisit the study of optimal regret rates in bandit combinatorial op-
timization. Our main contribution is in disproving the conjectures of Cesa-Bianchi and
Lugosi (2012) and Audibert et al. (2013) and showing that the expected regret of com-
binatorial bandits in general, and of the bandit shortest path problem in particular, is in
fact rΘpk3{2

?
dT q. Namely, we show a new lower bound of rΩpk3{2

?
dT q for combinatorial

bandits that matches the best known upper bound up to logarithmic factors, and also holds
(via simple adaptations) in the context of bandit shortest path. Furthermore, we show how
this lower bound can be adapted to the setting of online ranking (Helmbold and Warmuth,
2009).

Surprisingly, the construction used in our lower bound is very simple and is based on
straightforward adaptations of the one used by Audibert et al. (2013). Furthermore, our
analysis is also significantly simpler and shorter than theirs. In a nutshell, the improvement
in the bound is obtained via the following observation: when picking its randomized losses
for fooling the learner, the environment can choose noisy vectors whose entries are strongly
correlated with each other rather than being independent, as is the case in typical lower
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bound constructions (and, in particular, as suggested by Audibert et al., 2013).1 Since the
learner never observes individual entries of the loss vectors and can only see a sum of k
of them (for a particular choice of the action set S), she cannot exploit this correlation in
any way. On the other hand, with correlated noise terms the observed loss value can have
a variance that grows quadratically with k, rather linearly as is the case with i.i.d. noise,
which directly deteriorates the learner’s regret by an additional factor of

?
k.

1.1. Related work

Combinatorial bandit optimization is closely related to a somewhat more general online
learning scenario known as bandit linear optimization, which was first considered by McMa-
han and Blum (2004) (and subsequently by Dani et al., 2008; Abernethy et al., 2008). In
this setting, the decision set S is not restricted to subsets of the hypercube t0, 1ud and
may be an arbitrary compact convex set in Rd; instead, the only requirement is that the
loss the learner incurs by picking any action in S is bounded (say, by 1 in absolute value)
for all possible loss vectors of the environment. State-of-the-art bounds for this problem
were obtained by Bubeck et al. (2012) and Hazan and Karnin (2016), the latter using
computationally-efficient algorithms.

The general linear optimization setting allows for more general geometries of the sets
in which the decisions and the loss vectors reside (e.g., they are typically assumed to be
subsets of the Euclidean unit ball), and consequently the bounds obtained in that setting
are often not immediately comparable to those in the combinatorial one. In particular, the
lower bounds proved by Dani et al. (2008) and more recently by Shamir (2015) hold in
the general linear optimization setting (with Euclidean geometry) and do not apply to any
natural problem in the combinatorial setting.

A significant amount of work has been devoted to combinatorial optimization in the
closely related semi-bandit feedback model (e.g., György et al., 2007; Kale et al., 2010;
Audibert et al., 2013; Neu, 2015; Neu and Bartók, 2016), in which after playing an action
xt the learner may observe the individual entries of the loss vector `t that correspond to
active entries of xt, namely those entries i for which xtpiq “ 1. For example, in the context of
the online shortest path problem, instead of observing just the overall cost of the chosen path
(as is the case in the bandit setting), the player may observe the individual cost of each
edge in that path. In the semi-bandit case, however, the regret of bandit combinatorial
optimization is by now well understood, and is known to be of the form Θp

?
kdT q; see

Audibert et al. (2013) and the references therein.
For further and more detailed account on related partial information models and their

regret analysis, we refer to the recent survey by Bubeck and Cesa-Bianchi (2012).

2. Main results

We now state the main results of this paper. As our results are lower bounds on the learner’s
regret, we will henceforth focus on oblivious environments, that are required to choose the
entire sequence `1, . . . , `T before the game begins and thus do not react adaptively to the

1. Note that the correlation discussed here is between different entries of the same loss vector, rather than
between different loss vectors at different rounds. In particular, the loss vectors in our lower bound
constructions are still chosen i.i.d. so our bounds also apply to the stochastic i.i.d. case.
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player’s randomized decisions. (A lower bound for such environments also implies a lower
bound for more general adaptive environments.) In this setup, we will give bounds on the
expected regret, defined as

RT “ E

«

T
ÿ

t“1

`t ¨ xt

ff

´ min
xPS

T
ÿ

t“1

`t ¨ x , (1)

where the expectations are taken over the random choices of the learner.
Our first result deals with the general combinatorial bandits setting and shows that if

the environment is free to choose any action set S, the regret of the learner can be very
large. Our lower bound is attained in the multitask bandit problem, in which a learner
is simultaneously trying to solve k instances of the n-armed bandit problem (Auer et al.,
2002) with n “ d{k (which we assume is an integer for simplicity). At every round of the
game, the learner plays k actions, one in each of the bandit problems, and observes the sum
of the losses that correspond with these k actions. The set S of actions is given as follows:

S “

$

&

%

x P t0, 1ud : @j P rks

jn
ÿ

i“pj´1qn`1

xpiq “ 1

,

.

-

. (2)

Theorem 1 (multitask MAB). Assume that n ě 2, and let the set of actions S Ď t0, 1ud be
as defined in Eq. (2). Any learning algorithm for the multitask bandit problem must incur
at least rΩpk3{2

?
dT q expected regret in the worst case.

The bound in the theorem hides a factor of log´1{2 T which is an artifact of our con-
struction and is likely to be redundant. Nevertheless, up to logarithmic factors the bound is
tight and matches the upper bounds of Bubeck et al. (2012) and Hazan and Karnin (2016).

The lower bound of Theorem 1 does not hold for any set S but rather to an instance
of the multitask bandit problem, yet, as we show in the following results, is still general
enough to imply lower bounds for two important instances of bandit linear optimization.
Our next theorem gives a lower bound for the bandit shortest path problem, and shows that
even when we limit the action set S to paths in a certain graph, the regret of the learner
can still be forced to be large. Formally, given a connected DAG G “ pV,Eq with d edges
and two nodes s, t P V , we define the set of actions S Ď t0, 1ud as follows:

S “
!

x P t0, 1ud : the set te P E : xpeq “ 1u forms an s-t path
)

. (3)

Then, we have the following:

Theorem 2 (online shortest paths). Assume that k ď d{2. There exists a graph with d
edges such that any s-t path has exactly k edges (see Figure 1), for which the action set
S is defined as in Eq. (3). Against this graph any online learning algorithm for the bandit
shortest path problem must suffer at least rΩpk3{2

?
dT q expected regret in the worst case.

Again, the theorem implies that the regret rate for bandit shortest path is rΘpk3{2
?
dT q,

contrary to what was conjectured in the literature (Cesa-Bianchi and Lugosi, 2012).
Our last main result shows a lower bound for the online ranking problem. This problem

can be cast as finding a maximum matching in the complete bipartite graph Kk,n, that has
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d “ kn edges. The set of all of these matchings is represented by the action set S Ď t0, 1ud,
and the non-zero entries of every x P S indicate which edges participate in the matching
that corresponds with x. Formally,

S “

$

&

%

x P t0, 1ud : @j P rks

jn
ÿ

i“pj´1qn`1

xpiq “ 1, @l P rns
k
ÿ

i“1

xppi´ 1qn` lq “ 1

,

.

-

. (4)

Theorem 3 (online ranking). Assume that k ď n{2. Consider the problem of online ranking
between k and n elements, whose action set S is defined in Eq. (4). Any bandit learning
algorithm for this problem must suffer at least rΩpk3{2

?
dT q expected regret in the worst case.

3. Proofs

3.1. Main result

In this section we prove Theorem 1. We show a lower bound of rΩpk3{2
?
dT q on the regret

of any online learning algorithm applied to an instance of the multitask bandit problem.
Surprisingly, the factor

?
k improvement is obtained via a simple modification of previous

constructions (Audibert et al., 2013).
We start by applying Yao’s minimax principle, implying that it suffices to show ran-

domized strategy for the environment that forces any deterministic learning algorithm
to suffer rΩpk3{2

?
dT q regret in expectation.2 We start by constructing an environment

that generates unbounded losses, and subsequently adapt the resulting lower bound to the
bounded case.

Set ε “ σ
a

kd{p4T q for some σ ą 0 whose value is to be determined later. Before the
game begins, in each of the k problems in S, the environment chooses the best arm uniformly
at random. We denote the vector indicating this choice by x‹ P S. At every round t, the
environment samples Zt „ N p0, σ2q. Denote the loss generated by environment on round t
as L1tpiq “ 1{2´ ε ¨ x‹piq ` Zt for i “ 1, . . . , d.

The idea behind this construction is as follows. In order to avoid large losses and min-
imize her regret, the learner has to identify the best arm in each of the k subproblems,
namely to recover x‹. Now suppose that the losses of each coordinate were sampled inde-
pendently, and each entry in L1t were to receive an i.i.d. sample of the Gaussian noise. Then
the variance of the loss observed by the learner, namely of the random variable Lt ¨ x for
any choice of x P S, is of the order of k. On the other hand, because of the correlation
between the losses of the different coordinates in the construction above, the variance of
the observed loss is of the order of k2. This allows us to gain and additional

?
k factor

in the lower bound on the regret. Note that, crucially, the learner always observes a sum
of k random noise terms and can never peek into the individual terms in the sum (this
is due to the bandit feedback and the specific structure of the decision set S); hence, the
correlation in the noise cannot be exploited by the learner and the increase in the overall
variance comes at no price.

For the construction above, we have the following lemma.

2. Consequently, in the definition of the regret and throughout the analysis, expectations are taken with
respect to the environment’s randomization rather than the learner’s who is now deterministic.
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s t

Figure 1: Graph for the lower bound. The graph consists of k{2 layers, in each the learner
has to choose one of d{k vertices for an s-t path to pass through.

Lemma 4. Any deterministic player must suffer a regret of at least σk3{2
?
dT {8 in expec-

tation against an environment that plays the losses L11, . . . , L
1
T .

To show that Theorem 1 holds we need to show that the learner suffers large re-
gret against an environment that plays losses that are bounded in r0, 1sd. While the
losses L11, . . . , L

1
T are unbounded, for the right choice of σ they are bounded with high

probability. We now show that this allows us to obtain a lower bound on the regret
against an environment that plays losses L1, L2, . . . , LT , such that Ltpiq “ clippL1tpiqq for
clippaq “ maxtminta, 1u, 0u.

Theorem 5. Assume that T ě kd and let σ2 “ 1{p192 ` 96 log T q. Any deterministic
player must suffer an expected regret of at least σk3{2

?
dT {16 against an environment that

plays the losses L1, . . . , LT .

The proof of Theorem 1 is now given by setting the value of σ into the bound in
Theorem 5.

3.2. Bandit shortest path

In this section we show a lower bound for the bandit shortest path problem, proving The-
orem 2. Suppose without loss of generality that k and d are even, and that d is a multiple
of k. We show a lower bound on the regret by constructing a graph that simulates the
multitask bandit problem with k{2 problems of d{k arms each.

This graph is shown in Figure 1. The graph consists of d edges and d{2`k{2`1 vertices
set in k{2 layers. Each layer has an incoming vertex connected to d{k intermediate vertices,
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all of them connected to the same outgoing vertex. This outgoing vertex is the incoming
vertex of the next layer and so forth. Note that to form an s-t path the learner has to pass
through exactly one of the d{k vertices in each layer, and therefore every such path has
exactly k edges.

Now, given the losses L1, L2, . . . , LT generated by the environment of Section 3.1, we
shall construct an environment for the shortest path problem such that the regret of the
learner would be the same as the one in the proof of Theorem 1. Indeed, recall that the
loss at coordinates pj ´ 1qd{k ` 1, . . . , jd{k is associated with the losses of the j’th d{k-
armed bandit problem. Then on round t for the j’th layer of the graph, we can set the
losses Ltppj ´ 1qd{k ` 1q, . . . , Ltpjd{kq to the edges going from the incoming vertex to the
intermediate vertices, and a loss of 0 to the edges going from the intermediate vertices to
the outgoing vertex.

Therefore, we have a bijection between any s-t path and a set of k{2 arms in the
aforementioned multitask bandit problem, such that the sum of the losses on the edges
of the s-t path and the sum of the losses of these k{2 arms are the same. We conclude
by invoking Theorem 1 that says that any learner must suffer an expected regret of at
least rΩpk3{2

?
dT q, as claimed.

3.3. Online ranking

In this section we prove Theorem 3 by a similar construction to the one in Section 3.1, for
which we present the following random environment.

Set ε “ σ
a

kd{p8T q. Before the game starts, the environment samples a maximum
matching in Kk,n unfiromly at random, and denote the vector indicating this choice by x‹ P
S, for the set S defined in Eq. (4). At every round t, the environment samples Zt „ N p0, σ2q.
Denote the loss generated by the environment on round t as L1tpiq “ 1{2´ ε ¨ x‹piq ` Zt for
all i “ 1, 2, . . . , d.

We have the following lemma.

Lemma 6. Any deterministic player must suffer regret of at least σk3{2
?
dT {8 in expecta-

tion against an environment that plays the losses L11, . . . , L
1
T .

Now to prove Theorem 3, the result above can be adapted to bounded losses in the same
manner as done in Theorem 5.

4. Additional proofs

4.1. Proof of Lemma 4

Proof. Let us denote by i‹1, . . . , i
‹
k the locations of the non-zero coordinates of the ran-

dom variable x‹, arranged in increasing order. We next introduce the random variables
T1, . . . , Tk, where each Tj is the number of times the learner played an xt such that xtpi

‹
j q “ 1.

For each x P S, we introduce the notations Px and Ex indicating probability and expectation
with respect to the marginal distributions under which x‹ “ x. Then,
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RT “ E

«

T
ÿ

t“1

L1t ¨ xt ´min
xPS

T
ÿ

t“1

L1t ¨ x

ff

ě E

«

T
ÿ

t“1

L1t ¨ xt ´
T
ÿ

t“1

L1t ¨ x
‹

ff

“
1

nk

ÿ

xPS

Ex

«

T
ÿ

t“1

L1t ¨ xt ´
T
ÿ

t“1

L1t ¨ x

ff

“
1

nk

ÿ

xPS

ε ¨ Ex

«

k
ÿ

j“1

pT ´ Tjq

ff

“ ε

˜

kT ´
k
ÿ

j“1

1

nk

ÿ

xPS

Ex rTjs

¸

, (5)

and in order to proceed, we need to upper bound ExrTjs for each j.
For every x P S and j P rks we introduce a new distribution referred to as Px,´j

and Ex,´j . It is the same as Px except that the loss of coordinate i‹j is also 1{2`Zt (instead

of 1{2` Zt ´ ε). Let λt be the loss observed at time t, and λptq “ pλ1, . . . , λtq be the losses
observed up to and including time t. Then, since the sequence λpT q determines the actions
of the learner over the entire game, and by Pinsker’s inequality,

ExrTjs ´ Ex,´jrTjs ď T ¨DTV

´

Px,´j
”

λpT q
ı

, Px
”

λpT q
ı¯

ď T

c

1

2
DKL

`

Px,´j
“

λpT q
‰
›

›Px
“

λpT q
‰˘

. (6)

Moreover, by the chain rule of KL-divergence, DKL

`

Px,´jrλpT qs
›

›PxrλpT qs
˘

equals

T
ÿ

t“1

Eλpt´1q„Px,´j

”

DKL

´

Px,´j
”

λt

ˇ

ˇ

ˇ
λpt´1q

ı ›

›

›
Px

”

λt

ˇ

ˇ

ˇ
λpt´1q

ı ı̄

. (7)

Consider a single term in the sum, and recall that λpt´1q determines the action xt chosen by
the learner on round t. If xtpi

‹
j q “ 0, the loss observed under Px and Px,´j are the same, and

the KL divergence is 0. If xtpi
‹
j q “ 1 then the observed losses under Px and Px,´j are both

Gaussian whose means are ε apart, and the variance of both of them is σ2k2. Therefore,

DKL

´

Px,´j
”

λt

ˇ

ˇ

ˇ
λpt´1q

ı ›

›

›
Px

”

λt

ˇ

ˇ

ˇ
λpt´1q

ı¯

ď
ε2

2k2σ2
.

Plugging the above back into Eq. (7),

DKL

´

Px,´j
”

λpT q
ı ›

›

›
Px

”

λpT q
ı¯

ď

T
ÿ

t“1

Px,´j
“

xtpi
‹
j q “ 1

‰

¨
ε2

2k2σ2
“

ε2

2k2σ2
Ex,´jrTjs ,

and the latter back into Eq. (6), we get ExrTjs ď Ex,´jrTjs ` εT {p2kσq ¨
a

Ex,´j rTjs.
Next, we need the following lemma that we prove in Section 4.2.
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Lemma 7. In the conditions of Lemma 4 and by the construction above, we have

1

nk

ÿ

xPS

Ex,´j rTjs “
T

n
.

For every problem j “ 1, . . . , k,

1

nk

ÿ

xPS

ExrTjs ď
1

nk

ÿ

xPS

Ex,´jrTjs `
εT

2kσ
¨

1

nk

ÿ

xPS

b

Ex,´jrTjs

ď
1

nk

ÿ

xPS

Ex,´jrTjs `
εT

2kσ

d

1

nk

ÿ

xPS

Ex,´jrTjs

ď
T

2
`
εT

2σ

c

T

kd
,

where the second inequality is by Jensen’s inequality, and the last inequality is since n ě 2
and d “ kn. Let us now return to Eq. (5). We can lower bound the regret as

RT ě ε

˜

kT ´
k
ÿ

j“1

˜

T

2
`
εT

2σ

c

T

kd

¸¸

“ εkT

˜

1

2
´

ε

2σ

c

T

kd

¸

.

For our choice of ε, we get that ε{p2σq
a

T {pkdq is at most 1{4, and so

RT ě σ

c

kd

4T
¨ kT

ˆ

1

2
´

1

4

˙

“
σ

8
k3{2

?
dT ,

as claimed.

4.2. Proof of Lemma 7

Proof. For any choice i‹1, i
‹
2, . . . , i

‹
k, let us denote by xpi‹q the corresponding x‹ P S. Fol-

lowing Audibert et al. (2013), we consider

ÿ

xPS

Ex,´j rTjs “
ÿ

i‹1,...,i
‹
j´1,i

‹
j`1,...,i

‹
k

ÿ

i‹j

Expi‹q,´j rTjs .

Now, keeping i‹1, . . . , i
‹
j´1, i

‹
j`1, . . . , i

‹
k fixed the distribution Pxpi‹q,´j is the same for any

choice of i‹j and therefore, since at every round of the game the learner must choose exactly
one arm in the j’th problem, we must have

ř

i‹j
Expi‹q,´jrTjs “ T .

Putting it all together, we obtain

ÿ

i‹1,...,i
‹
j´1,i

‹
j`1,...,i

‹
k

ÿ

i‹j

Expi‹q,´j rTjs “
ÿ

i‹1,...,i
‹
j´1,i

‹
j`1,...,i

‹
k

T “ nk´1T ,

and thus
1

nk

ÿ

xPS

Ex,´j rTjs “
1

nk
nk´1T “

T

n
.
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4.3. Proof of Theorem 5

Proof. Let X1, X2, . . . , XT be the predictions of the learner against an environment that
plays L1, L2, . . . , LT , and let R̂T be the regret attained by the learner,

R̂T “

T
ÿ

t“1

Lt ¨Xt ´min
xPS

T
ÿ

t“1

Lt ¨ x .

Also define the pretend-regret obtained by playing X1, X2, . . . , XT against an enivronment
that plays L11, L

1
2, . . . , L

1
T as

R̂1T “
T
ÿ

t“1

L1t ¨Xt ´min
xPS

T
ÿ

t“1

L1t ¨ x .

Now note that if it happens that at every round t, all coordinates of L1t are between 0
and 1, then R̂T “ R̂1T . Denote this event by E. Then,

ErR̂1T s ď ErR̂T s ` kT ¨ PrEcs “ RT ` kT ¨ PrEcs (8)

where the inequality is true since the regret is at most kT with probability 1.
It thus remains to upper bound the probability that E does not occur. We will show

that PrEcs ď ε{8, which by combining Eq. (8) and Lemma 4 would yield:

RT ě
σk3{2

?
dT

8
´
σk3{2

?
dT

16
“
σk3{2

?
dT

16
,

as required. Now, for E to occur it suffices that ε ď 1{4 and that Zt ď 1{4 for every round
t. Since

ε “

c

σ2kd

4T
ď

d

kd

p192` 96 log T qT
ď

c

1

192
ď

1

4
,

by our choice of ε and σ and since T ě kd by assumption, we have that the probability PrEcs
is upper bounded by the probability that Zt ą 1{4 at some (at least one) round t. Employing
the standard tail bound PpZ ą xq ď expp´x2{2σ2q for the normal distribution and the union
bound, the latter is bounded by

T ¨ PrZ1 ą 1{4s ď T exp

˜

´
1

2σ2

ˆ

1

4

˙2
¸

“ T exp p´p6` 3 log T qq

“ e´6
1

T 2
.

Therefore, for the probability that E does not occur to be at most ε{8 it suffices to have

16e´6
1

T 2
ď

d

1

p192` 96 log T qT
.

Rearranging the terms it suffices to have T 3 ě 0.16`0.08 log T , that holds for any T ě 1.
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4.4. Proof of Lemma 6

Proof. Let us denote by i‹1, . . . , i
‹
k the locations of the nonzero coordinates of the ran-

dom variable x‹, arranged in increasing order. We next introduce the random variables
T1, . . . , Tk, where each Tj is the number of times the learner played an xt such that xtpi

‹
j q “ 1.

For each x P S, we introduce the notations Px and Ex indicating probability and expectation
with respect to the marginal distributions under which x‹ “ x. Then,

RT “ E

«

T
ÿ

t“1

L1t ¨ xt ´min
xPS

T
ÿ

t“1

L1t ¨ x

ff

ě ε

˜

kT ´
k
ÿ

j“1

pn´ kq!

n!

ÿ

xPS

Ex rTjs

¸

, (9)

and in order to proceed, we need to upper bound ExrTjs for each j.
For every x P S and j P rks we introduce a new distribution, which is the same as Px

except that the loss of coordinate i‹j is also 1{2 ` Zt. We shall refer to these new laws by
Px,´j and Ex,´j . From now on the proof proceeds similarly to that of Lemma 4, with the
exception that Lemma 7 is replaced by the following lemma whose proof can be found in
Section 4.5.

Lemma 8. In the conditions of Lemma 6 and by the construction above, we have

pn´ kq!

n!

ÿ

xPS

Ex,´j rTjs ď
T

n´ k ` 1
.

Recall that k ď n{2 by assumption, that in particular implies n ´ k ` 1 ě 2 as well as
n´ k ` 1 ě n{2. Therefore, for all j “ 1, 2, . . . , k,

pn´ kq!

n!

ÿ

xPS

ExrTjs ď
pn´ kq!

n!

ÿ

xPS

Ex,´jrTjs `
εT

2kσ
¨
pn´ kq!

n!

ÿ

xPS

b

Ex,´jrTjs

ď
pn´ kq!

n!

ÿ

xPS

Ex,´jrTjs `
εT

2kσ

d

pn´ kq!

n!

ÿ

xPS

Ex,´jrTjs

ď
T

2
`

εT

2kσ

c

2T

n
.

Let us now return to Eq. (9). Using the fact that n “ d{k, we can lower bound the regret
as

RT ě εkT

˜

1

2
´
ε

σ

c

T

2kd

¸

,

which, by our choice of ε, allows us to obtain the desired lower bound.

4.5. Proof of Lemma 8

Proof. Recall that we sample x‹ uniformly at random from S, the set defined in Eq. (4),
and denote by UpSq the uniform distribution over S. Then, recalling the random variables
i‹1, i

‹
2, . . . , i

‹
k we can compute

Ex‹„UpSqEx‹,´j rTjs ,

by conditioning on i‹1, . . . , i
‹
j´1, i

‹
j`1, . . . , i

‹
k and taking the outer expectation only over i‹j .

11
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Now, there are exactly n ´ k ` 1 possible ways to choose i‹j in order to complete a
maximal matching. In addition, the distribution Px‹,´j is the same for any possible choice
of i‹j , and since at every round of the game the learner must choose exactly one position for
the j’th element, we must have

Ex‹„UpSq
”

Ex‹,´j rTjs
ˇ

ˇ

ˇ
i‹1 “ i1, . . . , i

‹
j´1 “ ij´1, i

‹
j`1 “ ij`1, . . . , i

‹
k “ ik

ı

“
1

n´ k ` 1

ÿ

x‹PS

1ri‹1“i1,...,i‹j´1“ij´1,i‹j`1“ij`1,...,i‹k“iks
Ex‹,´jrTjs

ď
T

n´ k ` 1
.

5. Conclusion and open problems

In this paper, we gave a tight characterization of the optimal regret rate in bandit combi-
natorial optimization and proved that it grows as rΘpk3{2

?
dT q, disproving the conjectures

of Cesa-Bianchi and Lugosi (2012) and Audibert et al. (2013). Our lower bounds apply to
important instances of the framework, including the bandit versions of the online shortest
path and the online ranking problems.

An interesting direction for future work is to explore instance-specific bounds, i.e.,
bounds that depend on the structure of the specific action set S used. What are the
geometric and combinatorial properties of the set S that dictate the optimal rate of regret
in the induced learning problem? In particular, in the specific context of the bandit shortest
path problem, what are the graph-theoretic properties of the network that govern the diffi-
culty of the online problem? Even in extremely simple graphs, such as the two-dimensional
directed grid over n2 nodes (where the s and t nodes are located in two opposite corners),
characterizing the optimal rate of regret remains an open problem. We suspect such prob-
lems to be non-trivial already in full-information online combinatorial optimization, but
expect the bandit setting to be particularly challenging.

For the problem of online ranking, Theorem 3 handles the case of kˆn permutations in
which k is smaller than n. However, quantifying the rate of regret in the important case of
full permutations (i.e., with k “ n) remains an open problem. In particular, is the optimal
regret Θpn2

?
T q in this setting?
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