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Abstract

Structured output prediction is a powerful
framework for jointly predicting interdepen-
dent output labels. Learning the parame-
ters of structured predictors is a central task
in machine learning applications. However,
training the model from data often becomes
computationally expensive. Several meth-
ods have been proposed to exploit the model
structure, or decomposition, in order to ob-
tain efficient training algorithms. In particu-
lar, methods based on linear programming re-
laxation, or dual decomposition, decompose
the prediction task into multiple simpler pre-
diction tasks and enforce agreement between
overlapping predictions. In this work we
observe that relaxing these agreement con-
straints and replacing them with soft con-
straints yields a much easier optimization
problem. Based on this insight we propose an
alternative training objective, analyze its the-
oretical properties, and derive an algorithm
for its optimization. Our method, based
on the Frank-Wolfe algorithm, achieves sig-
nificant speedups over existing state-of-the-
art methods without hurting prediction ac-
curacy.

1 Introduction

Structured prediction drives many applications of ma-
chine learning, including computer vision, natural lan-
guage processing, and computational biology. Ex-
amples include object detection (Felzenszwalb et al.,
2010), parsing (Koo et al., 2010), and protein design
(Sontag et al., 2008). In this setting data instances are
mapped to labels with rich internal structure, whether
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objects, parse trees, or molecular structures. Although
one may decompose the prediction task into multiple
independent predictions, it is often better to jointly
predict the structured labels in order to account for
the correlations between labels, and thus improve pre-
diction accuracy.

In order to achieve high prediction accuracy, the pa-
rameters of structured predictors are learned from
training data. In particular, in the Structured SVM
framework, the learning objective is formulated as reg-
ularized structured hinge loss minimization (Collins,
2002; Taskar et al., 2003; Tsochantaridis et al., 2004).
Despite the convexity of the structured SVM objective
function, finding the optimal parameters of these mod-
els is computationally expensive, since it requires com-
paring training labels with predicted labels. For some
specific models (e.g., tree-structured graphs, match-
ings, and supermodular scores), exact prediction can
be done efficiently, however, in general computing the
objective or the gradient exactly is intractable. There-
fore, one usually resorts to approximate inference al-
gorithms (cf. Taskar et al., 2003; Kulesza and Pereira,
2007; Finley and Joachims, 2008). One family of
such approximations that has proved quite success-
ful is based on linear programming (LP) relaxation, or
dual decomposition. In this approach the intractable
prediction task is decomposed into simpler prediction
tasks, and consistency among overlapping predictions
is enforced. Although tractable, these algorithms are
often very expensive when used as a subroutine within
the learning algorithm.

In this work we propose a novel training algorithm for
structured SVMs. We observe that the hard consis-
tency constraints between overlapping predictions are
computationally expensive. Instead, we suggest to en-
force these constraints in a soft manner, by introduc-
ing a penalty term that accounts for constraint vio-
lation. We provide theoretical guarantees for the soft
training objective, and then derive an efficient algo-
rithm for its optimization based on the Frank-Wolfe
algorithm. After analyzing the convergence rate of
the proposed algorithm, we proceed to evaluate its
performance empirically. Our experiments show sig-
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nificant speedups compared to other state-of-the-art
structured SVM trainers, especially when training in-
stances pose challenging inference problems. Impor-
tantly, this improved runtime comes with no loss in
prediction accuracy.

2 Related Work

Learning structured output predictors was proposed as
an extension of binary SVMs in Collins (2002); Taskar
et al. (2003); Tsochantaridis et al. (2004). These
works formulate learning of structured SVMs as a con-
vex program, and in the last decade numerous al-
gorithms have been proposed for solving it. Those
include primal methods like cutting plane (Tsochan-
taridis et al., 2004), structured perceptron (Collins,
2002) and stochastic gradient descent (SGD)1 (Ratliff
et al., 2007; Shalev-Shwartz et al., 2011), as well as
dual methods like structured sequential minimal opti-
mization (Taskar et al., 2003), exponentiated gradient
(Collins et al., 2008), and the Frank-Wolfe algorithm
(Lacoste-Julien et al., 2013). The faster of these meth-
ods achieve a convergence rate of O(1/ε), however they
all require a call to the so-called maximization oracle
at each iteration, which is NP-hard in general. Con-
sequently, several works proposed to replace the max-
imization oracle with linear program relaxations thus
making learning structured SVMs tractable for general
problems (Taskar et al., 2003; Kulesza and Pereira,
2007; Finley and Joachims, 2008). Nevertheless, the
execution of LP solvers as a subroutine is the compu-
tational bottleneck of these approaches, and can get
quite expensive when training instances are large and
complicated.

Recently, several works proposed to decompose the
LP within structured SVMs using dual losses (Meshi
et al., 2010; Hazan and Urtasun, 2010; Komodakis,
2011). This dual decomposition approach allows to
learn structured predictors over general graphs with-
out relying on computationally expensive LP solvers
as subroutines. Instead, it requires only cheap local
updates that respect the structure of the decomposi-
tion. Our method is similar in the sense that it requires
only cheap local updates that exploit the structure of
the model. However, while previous approaches rely
on gradient based optimization and heavily depend on
their learning rate (i.e., the gradient step size), ours
is a dual method based on Frank-Wolfe optimization
(Frank and Wolfe, 1956; Lacoste-Julien et al., 2013).
This has the advantage of not requiring tuning of the
learning rate, and it allows us to use a sound stopping

1More precisely, in this context it is a stochastic subgra-
dient algorithm since the objective is non-differentiable,
but, as is common, we use SGD.

condition by calculating the duality gap.

Our approach is based on softly enforcing convex pro-
gram constraints when learning structured predictors.
This is known as the penalty method, and has a long
history in optimization (see Boukari and Fiacco, 1995,
for a survey). Recently, Belanger et al. (2014) pro-
posed to replace hard agreement constraints with soft
constraints in the context of the prediction task (i.e.,
MAP inference). Specifically, they introduce a non-
smooth penalty term for constraint violation, which
results in box-constraints on dual variables. Similar
to our work, they show that optimizing the soft ob-
jective can be much faster than optimizing the hard-
constrained one. Our work differs, since we focus on
the learning problem rather than prediction. Also, our
penalty terms are smooth, which leads to a different
objective function and faster convergence guarantees.

3 Problem Formulation

Consider a supervised learning setting with data in-
stances x and labels y. In structured output learning,
the possible structures are incorporated into the high-
dimensional labels y = (y1, . . . , yn). In this super-
vised learning setting, training data {(x(m), y(m))}Mm=1

is used to learn the parameters w ∈ Rd of the linear
prediction rule y(x;w) = argmaxy w

>φ(x, y), where

φ(x, y) ∈ Rd is a function that maps data-label pairs
to a feature vector. The goodness of fit is measured
by the empirical risk, i.e., the average prediction loss
∆(y(x(m);w), y(m)) over the training data. Due to the
non-convexity of the empirical risk, structured SVMs
upper bound the task loss by a convex surrogate called
the structured hinge loss (Taskar et al., 2003; Tsochan-
taridis et al., 2004). This yields the objective:

min
w

λ

2
‖w‖2 +

1

M

∑
m

max
y

[
w>φ(x(m), y) + ∆(y, y(m))

]
− w>φ(x(m), y(m)) (1)

Since the space of possible outputs y = (y1, ..., yn)
is exponential in n, the maximization over outputs
will generally be intractable. In many applications,
it is common to assume that the score function
w>φ(x, y) decomposes into simpler score functions
with respect to subsets of indexes α ⊂ {1, ..., n},
namely w>φ(x, y) =

∑
α w
>
α φα(x, yα). Such decom-

posed scores consider only (possibly overlapping) sub-
sets of output variables yα = {yi}i∈α. Assuming that
the task loss ∆ decomposes in a similar manner, one
can write the maximization problems for prediction
and training in the form maxy

∑
α θα(yα). For ex-

ample, in many applications the model assigns scores
to single and pairs of output variables that corre-
spond to nodes and edges of an undirected graph G:
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∑
ij∈E(G) θij(yi, yj)+

∑
i∈V (G) θi(yi). For some decom-

positions, such as tree-structured graphs and super-
modular potential functions, the maximization over
outputs can be solved exactly and efficiently. However,
this problem is generally NP-hard, and some kind of
approximation will be necessary.

One approach to relax the hard learning problem of
Eq. (1) is to replace the computationally intractable
structured hinge loss for each training example by
its (relaxed) dual (Taskar et al., 2005; Meshi et al.,
2010). Dividing the subsets α into singletons, denoted
by i = 1, ..., n, and high-order subsets c (also called
“factors”), the resulting training problem is:

G : min
w,δ

g(w, δ) := (2)

λ

2
‖w‖2 +

1

M

∑
m

[∑
i

max
yi

(
θ

(m)
i (yi;w) +

∑
c:i∈c

δ
(m)
ci (yi)

)

+
∑
c

max
yc

(
θ(m)
c (yc;w)−

∑
i:i∈c

δ
(m)
ci (yi)

)]
,

where θ(m)
α (yα;w) = w>α

(
φα(x(m), yα)− φα(x(m), y

(m)
α )

)
+

∆(yα, y
(m)
α ) for all α ∈ {c, i}, and wα is the set of

parameters pertaining to a particular variable or fac-

tor. In this formulation the primal variables2 δ
(m)
ci (yi)

encourage agreement between the maximizing argu-
ment of a factor and the maximizing arguments of
its corresponding variables. For each sample m there
exists such variable for a factor c, variable i ∈ c, and
assignment yi (cf. Sontag et al., 2011).

In many convex optimization problems the dual func-
tion is easier to optimize than the primal. The dual
problem associated with problem G takes the form:

F : max
µ∈M×L

f(µ) := µ>`− λ

2
‖Ψµ‖2 , (3)

where µ is the set of dual variables, Ψm,α,yα =
1
λM

(
φα(x(m), y

(m)
α )− φα(x(m), yα)

)
is a column vec-

tor in Rd, and `m,α,yα = 1
M∆(yα, y

(m)
α ) is a scalar.

In this formulation the dual variables µ
(m)
α (yα) can be

viewed as the marginal probability of the subset as-
signment yα (see, e.g., Taskar et al., 2003; Wainwright
and Jordan, 2008). Furthermore, the constraint set
M×L , known as the local marginal polytope, is a prod-
uct domain which enforces agreement between local
marginals within each training example:3

M(m)
L =

{
µ(m) ≥ 0 :

µ
(m)
c (yi) = µ

(m)
i (yi) ∀c, i ∈ c, yi∑

yα
µ

(m)
α (yα) = 1 ∀α ∈ {c, i}

}
,

(4)

2In the context of MAP inference δ are usually treated
as dual variables, but here we use them in the primal.

3Although we focus here on the first-order LP relax-
ation, our results can be easily extended to tighter relax-
ations (Sontag et al., 2008; Werner, 2008).

where µ
(m)
c (yi) =

∑
yc\i

µ
(m)
c (yc) is the marginal of the

variable assignment yi taken from the factor marginal

µ
(m)
c . Finally, by strong duality we have the mapping
w(µ∗) = Ψµ∗ from dual to primal optimal solutions.

Fortunately, training the model with the relaxed ob-
jective (Eq. (3) or Eq. (2)) often yields very accu-
rate predictors (Kulesza and Pereira, 2007; Finley and
Joachims, 2008). Motivated by this success, in this
work our goal is to solve this relaxed training prob-
lem efficiently. Focusing on the dual problem F , our
main insight is that part of the computational diffi-
culty in optimizing this objective stems from the fact
that the marginals associated with a training exam-
ple µ(m) are coupled together through hard agreement
constraints inML. Therefore, in what follows we alle-
viate this complication by introducing soft agreement
constraints, which facilitates more efficient training.

4 Learning with Soft Constraints

In this section we present an alternative training ob-
jective that softly enforces the marginalization con-
straints in Eq. (4). By penalizing violation of those
constraints we are able to learn structured predictors
effectively while avoiding the costly hard constraints.
Moreover, below we show that although we enforce the
constraints only softly, we can still control the accu-
racy of learning.

The penalty method is a generic approach for
constrained optimization in which some constraints
are replaced by a penalty term for violation of
those constraints (Boukari and Fiacco, 1995). For-
mally, consider the general optimization problem
maxµ∈S f(µ) s.t. Aµ = 0, and replace the constraint
with a penalty term: maxµ∈S f(µ) − 1

2ρ‖Aµ‖
2. Here

ρ is a parameter that controls the strength of the
penalty. Clearly, as ρ → 0 the penalty increases and
the solution of the unconstrained problem converges
to a solution for the original constrained problem.

Applying this idea to the marginalization constraints
in F (see Eq. (4)) means replacing the constraint

µ
(m)
c (yi) = µ

(m)
i (yi) with a penalty term of the form

1
2ρ

(
µ

(m)
c (yi)− µ(m)

i (yi)
)2

for all m, c, i ∈ c, yi. As be-

fore, we can write the resulting problem concisely as:

Fρ : max
µ∈S×

fρ(µ) := µ>`− λ

2
‖Ψµ‖2 − ρ

2
‖Aµ‖2 ,

(5)

where4 (Aµ)m,c,i,yi = 1
ρM

(
µ

(m)
c (yi)− µ(m)

i (yi)
)

, and

S× is a product domain with per-factor simplex con-
straints (see Eq. (4)). Intuitively, the additional

4We scale A by 1/M to get a similar form as Ψ. This is
used in our analysis later on.
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penalty term serves to “smooth” the boundaries of the
local marginal polytope constraints in F , while keep-
ing the feasible domain µ ∈ M×L unchanged. Notice
that in this formulation each factor is constrained in-
dependently so there is no coupling between factors.
In Section 5 we use this to derive an efficient training
algorithm, but first we study the theoretical properties
of the proposed objective.

4.1 Analysis

To better understand learning with soft constraints
(Eq. (5)), we begin by examining the dual of Fρ, which
takes the form (see Appendix A):

Gρ : min
w,δ

gρ(w, δ) := g(w, δ) +
ρ

2
‖δ‖2 . (6)

Strong duality provides the primal-dual mapping
δ(µ) = Aµ, and w(µ) = Ψµ. This problem is the
same as the primal G, except for the additional L2

term for δ. Notice that this regularization makes the
primal gρ strongly convex in both w and δ, whereas g
is strongly convex in w, but only piecewise linear in δ.
This is important from an optimization point of view,
since strong convexity may lead to better convergence
rates (cf. Shamir and Zhang, 2013). We next justify
the use of the softly constrained objective by bounding
its difference from the constrained one.

In the next theorem we use the following notation.
Let5 ‖w‖2 ≤ B for all w, let ‖φ(x, y)‖2 ≤ R for all
(x, y), and let ∆(y, y′) ≤ L for all (y, y′). Therefore,
‖θ‖∞ ≤ 2BR+ L. In addition, let |Yi| be the number
of states of output variable i, and let Ymax = maxi |Yi|
denote the maximum over all variables. Finally, let q
be the maximal number of factors (including single-
tons) in any instance.

Theorem 4.1. Let g∗ρ be the optimal value of Gρ, and
let g∗ be the optimal value of G. Then g∗ρ−

ρ
2h ≤ g

∗ ≤
g∗ρ, where h = M(8Ymaxq(BR+ L))2.

The proof is given in Appendix B. This theorem shows
that despite using soft constraints, we still have guar-
antees w.r.t. the original constrained objective. We
point out that such result does not hold in general,
and our proof makes use of special properties of the
objective function (see Appendix B). At first glance,
the bound in Theorem 4.1 may seem quite loose due
to the linear dependence on the number of samples M .
However, recall that the difference between gρ and g
is the L2 regularization term for δ. Unlike the weight
vector w, the number of agreement variables (length

5For a similar assumption see Theorem 1 in Weiss and
Taskar (2010). In fact, we can drop the assumption ‖w‖2 ≤
B and use a bound on ‖w∗‖2 similar to the one in Shalev-
Shwartz et al. (2011).

of δ) grows with M , and therefore its norm also grows
linearly with M . In Section 6 we demonstrate that
this is not a serious limitation of our approach, since
in practice the difference between the soft- and hard-
constrained solutions is not so large, even for relatively
high values of ρ.

The previous theorem shows that the soft optimum is
not far from the hard constrained one. We can actually
obtain a similar result for a near-optimal solution.

Theorem 4.2. Let µερ be a dual solution to Fρ
for which the duality gap is bounded: Dρ(µ

ε
ρ) =

gρ(w(µερ), δ(µ
ε
ρ)) − fρ(µ

ε
ρ) ≤ ε. Then (w(µερ), δ(µ

ε
ρ))

is
(
ε+ ρ

2h
)
-optimal for G.

The proof is given in Appendix C. Theorem 4.2 implies
that in order to get an ε̂-optimal solution to G, it is
enough to set ρ = ε̂/h and require a bound of ε̂/2
on the duality gap. We next proceed to derive an
optimization algorithm for the soft dual objective fρ.

5 Algorithm

In this section we propose to use the Frank-Wolfe al-
gorithm for optimizing our alternative dual problem
Fρ (Eq. (5)). As this is a constrained convex program,
there are other methods that can be applied to reach
the same global optimum, such as exponentiated gra-
dient. We opt for Frank-Wolfe due to its simplicity and
parameter-free implementation. In particular, it does
not require tuning of meta parameters (e.g., step-size).

The original Frank-Wolfe algorithm (Frank and Wolfe,
1956) is a conditional gradient method, where in each
step a linear upper-bound of the objective function is
computed, and then an optimal solution of the lin-
ear function under the constraints is found. The vari-
ables are then updated by taking a step towards this
optimal solution. Recently, a block-coordinate Frank-
Wolfe algorithm (BCFW) has been used for structured
SVMs, where in each iteration only a few of the vari-
ables are updated (Lacoste-Julien et al., 2013) (in this
setting it is equivalent to stochastic dual coordinate
ascent (Shalev-Shwartz and Zhang, 2013)). Moreover,
for structured SVMs the optimal step size can be com-
puted analytically, resulting in a parameter-free algo-
rithm.

The BCFW algorithm is applicable to product do-
mains, where variables in each block are constrained
independently of the other blocks. In structured SVMs
the constraints couple together all dual variables in
the same training example. As a result, in order to
compute an update, the algorithm requires calling a
maximization oracle per example. Even for approxi-
mate oracles, this may get quite costly when training
instances consist of many interdependent variables. In
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Algorithm 1 Block-coordinate Frank-Wolfe for soft
structured SVM

1: Initialize: w = 0, δ = 0, µ
(m)
α (yα) = 1{yα = y

(m)
α }

for all m,α, yα
2: while not converged do
3: Randomly sample a block (m,α)
4: if Variable chosen (α ∈ {i}) then

5: Let θ̂i(yi) = θ
(m)
i (yi;w) +

∑
c:i∈c δ

(m)
ci (yi)

6: Let y∗i = argmaxyi θ̂i(yi), and let si be the
corresponding indicator vector

7: Let γ =
θ̂>i

(
si−µ(m)

i

)
λ‖Ψm,i(si−µ(m)

i )‖2+ρNi‖si−µ(m)
i ‖2

and clip to [0, 1]
8: end if
9: if Factor chosen (α ∈ {c}) then

10: Let θ̂c(yc) = θ
(m)
c (yc;w)−

∑
i:i∈c δ

(m)
ci (yi)

11: Let y∗c = argmaxyc θ̂c(yc), and let sc be the
corresponding indicator vector

12: Let γ =
θ̂>c

(
sc−µ

(m)
c

)
λ‖Ψm,c(sc−µ

(m)
c )‖2−ρ

∑
i:i∈c ‖Aci(sc−µ

(m)
c )‖2

and clip to [0, 1]
13: end if
14: Update µ

(m)
α ← (1− γ)µ

(m)
α + γsα

15: Update w = Ψµ and δ = Aµ
16: end while

contrast, in our objective fρ each factor is constrained
independently, so the oracle calls are much cheaper.

Applying BCFW to our dual objective fρ yields Al-
gorithm 1. Here, Ni = |{c : i ∈ c}| is the number
of factors containing variable i, Ψm,α is the part in
Ψ corresponding to sample m and factor α, and Aci
marginalizes µc to values of variable i ∈ c. To de-
rive this algorithm, we need to first compute a linear
bound on the objective, which reduces to computing
the gradient of each block. It turns out that in our

case the block gradients are ∇
µ
(m)
α (yα)

fρ = θ̂
(m)
α (yα)

(lines 5 and 10). Interestingly, this has the exact same
form as the factor scores in the primal g (Eq. (2)),
and is known as a reparameterization of the model
scores (Wainwright and Jordan, 2008; Sontag et al.,
2011). The next step in the algorithm is to optimize
the linear function over the constraints, which means

computing sα = argmaxs′α∈Sα

〈
s′α,∇µ(m)

α
fρ

〉
. Since

Sα consists of local simplex constraints, the optimal
sα is just an indicator vector for the maximal ele-
ment (lines 6 and 11). Next, the optimal step size is
obtained by solving the univariate quadratic problem
minγ∈[0,1] fρ(µ+ γ(sα−µα)), which results in the val-
ues in lines 7 and 12. Finally, a step is taken towards
the optimal point sα (line 14).

Algorithm 1 has several compelling properties. First,

the update of primal variables (w, δ) in line 15 is com-

putationally cheap since a change in µ
(m)
α affects only

wα and δ variables pertaining to the chosen α (i.e.,
its neighbors in the factor graph). For more details
see Appendix D. Second, the algorithm employs sim-
ple per-factor maximization oracles, unlike more ex-
pensive oracles employed by other algorithms (e.g.,
max-marginals oracle in Meshi et al. (2010)). Third,
the algorithm can naturally handle global factors (i.e.,
yc = y) by storing only primal variables (w, δ) and
some auxiliary compact variables, and executing all
updates in primal space (see Appendix D). In this case,
all we need to do is solve the factor maximization in
line 11, which is possible for several global factors (cf.
Koo et al., 2010). On the other hand, if dual vari-
ables µ can be maintained, then this algorithm can be
naturally used with kernels. Fourth, since the optimal
step-size is computed analytically, there are no hyper-
parameters to tune. Finally, as a stopping criterion
we use the duality gap, which requires computing the
primal objective gρ every several passes over the data.

5.1 Convergence Rate

We next analyze the convergence rate of Algorithm 1.
We build on the following theorem.

Theorem 5.1 (Lacoste-Julien et al. (2013), Theo-

rem 2). For each t > 0 it holds that f∗ρ − E
[
f

(t)
ρ

]
≤

2Mq
t+2Mq

(
C⊗fρ + (f∗ρ − f

(0)
ρ )
)

, where C⊗fρ is the curvature

constant of fρ, and the expectation is over the ran-
dom choice of blocks. Furthermore, the duality gap is

bounded by:6 E
[
D

(t̂)
ρ

]
≤ 6Mq

t+1

(
C⊗fρ + (f∗ρ − f

(0)
ρ )
)

, for

some 0 ≤ t̂ ≤ t.

Given this theorem, it remains to compute the cur-
vature constant C⊗fρ . In Appendix E we show that

C⊗fρ = O
(
q
M

(
1
λ + 1

ρ

))
, which leads to the following

result.

Corollary 5.2. Algorithm 1 obtains (in expectation)
an ε-optimal solution to problem Gρ with duality gap

E [Dρ] ≤ ε after O
(
q2

ε

(
1
λ + 1

ρ

))
iterations.7

In comparison, for the constrained objective f
(Eq. (3)) the rate obtained in Lacoste-Julien et al.
(2013) is O

(
1
λε

)
, which seems faster. However, re-

call that each iteration requires calling a maximization

6Using a simple argument it is easy to show that the
Lagrange duality gap Dρ is equal to the Fenchel duality gap
in our case, which justifies this statement of the theorem.

7This actually requires assuming a bound on the initial

suboptimality f∗ρ − f
(0)
ρ , which can be partly relaxed with

a finer analysis of the line-search procedure (see Lacoste-
Julien et al., 2013).
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Figure 1: (Left) Training objective as a function of training epochs for different values of ρ. The primal gρ (upper) and

dual fρ (lower) soft objectives are shown with solid lines, and the constrained primal g(wρ, δρ) with a dashed line. The

horizontal line marks the optimal value g∗. (Right) Training objective as a function of the constant ρ for fixed numbers

of epochs. The soft primal gρ is denoted with a solid line, and the constrained primal g(wρ, δρ) with a dashed line. The

horizontal line marks the optimal value g∗.

oracle for a complete training example (µ(m) block),
while Algorithm 1 requires optimizing only over factor

blocks µ
(m)
α , which can be much cheaper. Combining

this rate with Theorem 4.2 yields the following result.

Corollary 5.3. Running Algorithm 1 for

O
(
q2

ε

(
1
λ + 1

ρ

))
iterations yields a primal solu-

tion w that is
(
ε+ ρ

2h
)
-optimal for problem G. Put

differently, in order to get an ε̂-optimal solution for
problem G, it is enough to set ρ = ε̂/h = O(ε̂/Mq2)

and run Algorithm 1 for O
(
q2

λε̂ + Mq4

ε̂2

)
iterations.

We observe that due to the linear dependence on M in
Theorem 4.1, we need to set ρ small in order to get an
accurate solution to problem G. In turn, this results in
a distressing term of Mq4/ε̂2 in our bound. However,
we will see in Section 6 that in actual applications
we do not have to set ρ very small to achieve good
accuracy.

6 Experiments

We next evaluate our algorithm empirically and com-
pare its performance against state-of-the-art baselines.
For all algorithms we use our own C++ implementa-
tion. We tune the regularization constant λ via cross-
validation, and report results for the optimal value,
when training with the entire trainset. We conduct ex-
periments on two different domains: multi-label clas-
sification and image segmentation.

Multi-label classification In multi-label classifica-
tion the task is to assign a subset of possible labels
that best fits a given input. In this problem each la-
bel is represented by a binary variable yi ∈ {0, 1}, and
the model consists of singleton and pairwise scores:

w>φ(x, y) =
∑
i(w
>
i x)yi +

∑
i,j wijyiyj (for all

(
n
2

)
possible pairs). We first focus on the Yeast dataset,
where there are n = 14 labels, |x| = 103 features
(hence, d = 1533), M = 1500 training samples, and
917 test samples.8

We begin by studying the effect of the penalty con-
stant ρ. Figure 1 (left) shows the training objective as
a function of the number of effective passes through
the data (epochs) for different values of ρ. First,
we observe, as expected, that as ρ becomes smaller
the optimum of the soft objective g∗ρ gets closer to
the optimal constrained objective g∗, and the algo-
rithm takes longer to converge. Second, the soft ob-
jective gρ(wρ, δρ) approaches the constrained objective
g(wρ, δρ), and in fact, for ρ ≤ 0.1 the two become
practically indistinguishable. This suggests that the
bounds in Section 4.1 may sometimes be loose.

Figure 1 (right) gives a different perspective on the ef-
fect of ρ. Here we fix the number of training epochs
(i.e., allowed computation) and plot the training ob-
jective for different values of ρ. We see that setting ρ
too large yields loose objective values, while setting ρ
too small results in slow convergence, which also makes
the objective value suboptimal. Setting ρ = 1 seems
to work well across different computational budgets (a
similar behavior was observed for the other datasets).

We next compare our algorithm to other state-of-the-
art trainers for structured SVM. In particular, we im-
plement the block-coordinate FW algorithm (Lacoste-
Julien et al., 2013) for the constrained problem F ,
where each block consists of a single training exam-
ple µ(m), and we use the GLPK solver to compute the

8The multi-label datasets are available at http://
mulan.sourceforge.net.

http://mulan.sourceforge.net
http://mulan.sourceforge.net
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Figure 2: Comparison of training objective (top row) and performance measure (bottom row) as a function of runtime

for the Yeast (left column), Reuters (middle column) and MSRC-21 (right column) datasets. In the top row we show only

the hard-constrained objective value g(w(µ), δ(µ)).

updates. In the same spirit of our approach, we also
tried to decrease the tolerance of constraint satisfac-
tion or solution accuracy within the LP solver, however
this did not result in any noticeable improvement in
runtime. We also run the Dual-Loss-Primal-Weights
(DLPW) algorithm (Meshi et al., 2010), which opti-
mizes g by combining block-minimization updates on
δ with SGD updates on w. Notice that this method is
similar to ours in the sense that the updates are ”lo-
cal” and do not process complete training samples. In
addition, we compare to a smooth version of DLPW
in which the max terms in g are replaced with soft-
max terms (Hazan and Urtasun, 2010). Here we try
several smoothing constants and show the best per-
forming one. For both DLPW variants we try several
step sizes for SGD (i.e., η/t) and show the one with
the best convergence behavior. We compare computa-
tional cost of the algorithms in terms of runtime rather
than oracle calls since different algorithms require or-
acles with very different costs.

Figure 2 (left, top) shows that our method is compet-
itive in terms of convergence speed. Notice that in
this problem the training instances consist of only 14
variables, so the LP solver employed by FW is pretty
effective and overall convergence is fast. Figure 2 (left,
bottom) compares test accuracy of the predictors. For
all algorithms we use an LP solver to compute test
prediction, and we use a simple rounding scheme in
case of fractional solutions. Here we observe that the
performance of our method is rather insensitive to the
choice of ρ, and even a large value ρ = 10 is sufficient
to obtain good prediction accuracy. We notice that our
algorithm is able to quickly learn an accurate model.

To compare the algorithms in a more challenging set-
ting, we run experiments on the Reuters multi-label
dataset (RCV1). We adopt the experimental setting
of Samdani and Roth (2012), where there are 6000
instances, with |x| = 47, 236 input features, and the
output is reduced to the n = 30 most frequent labels
(here, d ≈ 1.4M). We randomly split the data into
M = 5000 training and 1000 test samples. Perfor-
mance is measured by an F1 score rather than plain
accuracy, since the number of active labels per instance
is relatively small (see Samdani and Roth, 2012).

In Figure 2 (middle) we observe that our method is
up to two orders of magnitude faster than the base-
lines.9 Since outputs are modeled by a fully connected
graph over 30 labels, the LP solver consumes more
time, which in turn slows down the FW algorithm.
Here we see that choosing a strong penalty (ρ = 0.1)
might increase the runtime (although it is still signifi-
cantly faster than the baselines), however, mild values
(ρ ∈ {1, 10}) yield fast training and accurate predic-
tors.

Image segmentation We next conduct experi-
ments on the task of semantic segmentation from
computer vision. Here the goal is to assign a class
to each pixel of an input image. We focus on the
MSRC-21 dataset, and use the model and features
from Yao et al. (2012).10 In this problem there are
21 possible classes, and the model has two types
of output variables corresponding to fine-level and

9We omit DLPW here since it performed poorly.
10Available from http://ttic.uchicago.edu/~yaojian/

HolisticSceneUnderstanding.html.

http://ttic.uchicago.edu/~yaojian/HolisticSceneUnderstanding.html
http://ttic.uchicago.edu/~yaojian/HolisticSceneUnderstanding.html


Efficient Training of Structured SVMs via Soft Constraints

10
1

10
2

10
3

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Yeast

Trainset size

g(
w

* ρ) 
− 

g
*

10
1

10
2

10
3

−0.01

0

0.01

0.02

0.03

0.04
Reuters

Trainset size

g(
w

* ρ) 
− 

g
*

10
1

10
2

0

0.05

0.1

0.15

0.2
MSRC−21

Trainset size

g(
w

* ρ) 
− 

g
*

Figure 3: Difference between primal objective values for soft- and hard-constrained solutions (g(w(µ∗ρ), δ(µ
∗
ρ)) − g∗), as

a function of trainset size. The mean and 95% confidence interval over 10 random subsamples are shown.

coarse-level superpixels in the image. Each fine-
level superpixel i is involved in a pairwise score
with a single coarse-level superpixel j(i), encourag-
ing agreement. The weights are shared for all single-
ton and all pairwise scores, and the overall score is:
w>φ(x, y) =

∑
i∈Fine

(
wsyixi,yi − w

p
1{yi 6= yj(i)}

)
+∑

j∈Coarse w
s
yjxj,yj . In this dataset each image has on

average 65 fine-level and 31 coarse-level superpixels.
There are a total of 591 images divided into M = 335
train and 256 test samples.

In Figure 2 (right, top) we compare the training time
of our algorithm to that of the baselines. We observe
once more that our algorithm is two orders of magni-
tude faster than the others. As before, the per-sample
LPs are challenging, so each iteration of FW becomes
quite expensive. Furthermore, we find out that DLPW
is sensitive to the choice of step-size, and even the best
choice is rather slow. In contrast, our algorithm has
cheap local updates and uses the optimal step at each
iteration, thereby achieving fast convergence. In Fig-
ure 2 (right, bottom) we compare prediction quality
by computing the average per-pixel accuracy. Due to
parameter sharing, the total number of parameters is
small (d = 22), and all models reach high accuracy
levels after less than one epoch. However, since our
method has very low cost per iteration, it is able to set-
tle on an accurate model faster than the others. Here
we see that our method is insensitive to the choice of
ρ, and all values perform similarly.

Finally, we test the effect of the train size M on the
soft constrained objective function. To this end, we
randomly sample a subset of the training data of in-
creasing size (M), we set ρ = 1 and compute the dif-
ference g(w(µ∗ρ), δ(µ

∗
ρ)) − g∗, where µ∗ρ is obtained by

optimizing fρ. This is averaged over 10 random sub-
samples. In Figure 3 we see that for all datasets the
difference in objective values grows much slower than
linearly (notice the log-scale). In fact, as the train-
set becomes larger the difference in objectives stops
growing, and even shrinks. This again shows that the
bound in Theorem 4.2 may be loose in practice.

7 Conclusion and Future Work

In this paper we present a novel training algorithm for
structured prediction. The key idea of our work is that
strictly enforcing local marginalization constraints is
not so crucial in the context of structured learning.
Based on this insight, we apply the penalty method
to the structured SVM objective function. We pro-
vide theoretical guarantees for both the resulting ob-
jective function and optimization algorithm. We also
demonstrate empirically on diverse datasets, that us-
ing soft constraints can significantly reduce training
effort while maintaining the same predictive quality.

Our method can be extended in several ways. First,
it is reasonable to start the penalty strength ρ from
a fairly loose (high) value and gradually decrease it
along the iterations in order to enforce the marginal-
ization constraints more strictly. Second, one can use
an augmented Lagrangian formulation which includes
Lagrange multipliers for the constraints in addition to
the quadratic penalty. The multipliers are updated
in an outer loop, where in each iteration we need to
solve the problem in Eq. (5) with an additional linear
term (requires a minor modification to Algorithm 1).
The optimal solution is then guaranteed to satisfy the
marginalization constraints, for any value ρ. Third, to
improve the convergence rate, it is possible to smooth
the max terms in the primal objective Eq. (2), for
example by applying the smooth-max-of-hinge tech-
nique in Shalev-Shwartz and Zhang (2014). This adds
a simple regularizer to the dual problem Eq. (5) (which
again requires a small change in Algorithm 1).

Finally, our work is related to previous work on sta-
tistical estimation and optimization errors in machine
learning. In particular, it has been shown that in some
scenarios, it is not necessary to carry out the optimiza-
tion with great accuracy (Bottou and Bousquet, 2007;
Shalev-Shwartz and Srebro, 2008). In the same spirit,
our method trades-off optimization error with compu-
tational cost by using an approximate more convenient
objective function. Studying this trade-off in our case
is an interesting future direction.
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Supplementary Material
Efficient Training of Structured SVMs via Soft Constraints

A Dual of Soft Problem

In this section we show that the problems Eq. (5) and Eq. (6) are Lagrange duals. We start from a formulation
equivalent to Eq. (6):

min
w,ξ,δ

λ

2
‖w‖2 +

ρ

2

∑
m

‖δ(m)‖2 +
∑
m

∑
α

ξ(m)
α

s.t. ξ
(m)
i ≥ 1

M

(
θ

(m)
i (yi;w) +

∑
c:i∈c

δ
(m)
ci (yi)

)
for all m, i, yi

ξ(m)
c ≥ 1

M

(
θ(m)
c (yc;w)−

∑
i:i∈c

δ
(m)
ci (yi)

)
for all m, c, yc

The Lagrangian is:

L(w, ξ, δ, µ ≥ 0) =
λ

2
‖w‖2 +

ρ

2

∑
m

‖δ(m)‖2 +
∑
m

∑
α

ξ(m)
α

−
∑
m

∑
i

∑
yi

µ
(m)
i (yi)

(
ξ

(m)
i − 1

M
θ

(m)
i (yi;w)− 1

M

∑
c:i∈c

δ
(m)
ci (yi)

)

−
∑
m

∑
c

∑
yc

µ(m)
c (yc)

(
ξ(m)
c − 1

M
θ(m)
c (yc;w) +

1

M

∑
i:i∈c

δ
(m)
ci (yi)

)

The optimality conditions entail:

w =
1

λM

∑
m

∑
α

∑
yα

µ(m)
α (yα)

(
φα(x(m), y(m)

α )− φα(x(m), yα)
)

= Ψµ

∑
yα

µα(yα) = 1 for all m,α = {c, i}

δ
(m)
ci (yi) =

1

ρM

(
µ(m)
c (yi)− µ(m)

i (yi)
)

for all m, c, i ∈ c, yi ⇒ δ = Aµ

Using those in the Lagrangian yields the dual problem of Eq. (5).

B Proof of Theorem 4.1

In this section we prove Theorem 4.1, which is restated here for convenience.

Theorem 4.1 Let g∗ρ be the optimal value of Gρ, and let g∗ be the optimal value of G. Then g∗ρ −
ρ
2h ≤ g

∗ ≤ g∗ρ,
where h = M(8Ymaxq(BR+ L))2.

Proof. Denote by (w∗, δ∗) an optimal solution to g, and by (w∗ρ, δ
∗
ρ) an optimal solution to gρ.
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For the first direction, we have:

g∗ = min
w,δ

g(w, δ)

≤ g(w∗ρ, δ
∗
ρ)

≤ g(w∗ρ, δ
∗
ρ) +

ρ

2
‖δ∗ρ‖2

= g∗ρ

Using the bound ‖δ∗‖2 ≤ h, we can prove the other direction:

g∗ρ = min
w,δ

(
g(w, δ) +

ρ

2
‖δ‖2

)
≤ g(w∗, δ∗) +

ρ

2
‖δ∗‖2

= g∗ +
ρ

2
‖δ∗‖2

≤ g∗ +
ρ

2
h

To conclude the proof, we next show that ‖δ∗‖2 ≤ h by bounding ‖δ(m)∗‖ ≤ 8Ymaxq(BR+ L).

B.1 Bounding ‖δ‖2

In this section we prove the bound11 ‖δ∗‖2 ≤ h(θ), where h(θ) = (4Ymaxq‖θ‖∞)2. Since ‖θ‖∞ ≤ 2BR + L,
this concludes the proof of Theorem 4.1. The proof here is the zero-temperature limit of the proof in Meshi et
al. (2012) [see Lemma 1.2 in the appendix therein].

We actually prove this bound for any δ such that σ(δ) ≤ σ(0) ≡ κ(θ), where σ(δ) =∑
i maxyi

(
θi(yi;w) +

∑
c:i∈c δci(yi)

)
+
∑
c maxyc

(
θc(yc;w)−

∑
i:i∈c δci(yi)

)
. This obviously holds at the op-

timum δ∗. Our goal is to bound ‖δ‖2 under this constraint. Since shifting δci(·) by a constant does not change
the value of the solution, but changes the norm arbitrarily, we need to add some constraints.
In particular, we require that: ∑

yi

δci(yi) = 0 for all c, i

We will actually find:

max
δ
‖δ‖1 s.t. σ(δ) ≤ κ(θ), and

∑
yi

δci(yi) = 0 ∀c, i (7)

Since ‖δ‖2 ≤ ‖δ‖1 this implies a bound on ‖δ‖22.

We begin by formulating an equivalent optimization problem to Eq. (7):

max
δ,δ̄

1

2

∑
c

∑
i:i∈c

∑
yi

uci(yi)δci(yi) +
1

2

∑
c

∑
i:i∈c

∑
yi

uci(yi)δ̄ci(yi)

s.t. σ(δ, δ̄) ≤ κ(θ)∑
yi

δ̄ci(yi) = 0 ∀c, i

δ = δ̄ (8)

maximizing externally over uci(yi) ∈ {−1,+1}, and where:

σ(δ, δ̄) =
∑
c

max
yc

(
θc(yc)−

∑
i:i∈c

δci(yi)

)
+
∑
i

max
yi

(
θi(yi) +

∑
c:i∈c

δ̄ci(yi)

)
11To simplify notation we drop the sample index m and the dependence on w.
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We will upper bound the dual of this problem.

The Lagrangian is:

L(δ, δ̄, τ, η, β) =
1

2

∑
c

∑
i:i∈c

∑
yi

uci(yi)δci(yi) +
1

2

∑
c

∑
i:i∈c

∑
yi

uci(yi)δ̄ci(yi)

+ τκ(θ)− τ
∑
i

max
yi

(
θi(yi) +

∑
c:i∈c

δ̄ci(yi)

)
− τ

∑
c

max
yc

(
θc(yc)−

∑
i:i∈c

δci(yi)

)
+
∑
c

∑
i:i∈c

∑
yi

ηci(yi)(δci(yi)− δ̄ci(yi))

+
∑
c

∑
i:i∈c

βci
∑
yi

δ̄ci(yi)

with τ ≥ 0.

Rearranging terms we obtain:

= − τ
∑
i

max
yi

θi(yi) +
∑
c:i∈c

δ̄ci(yi)−∑
y′i

1

τ
δ̄ci(y

′
i)

(
1

2
uci(y

′
i)− ηci(y′i) + βci

)
− τ

∑
c

max
yc

θc(yc)−∑
i:i∈c

δci(yi)−∑
y′i

1

τ
δci(y

′
i)

(
1

2
uci(y

′
i) + ηci(y

′
i)

)
+ τκ(θ)

The Lagrangian dual is therefore:

= min
τ≥0,η,β

− τ
∑
i

min
δ̄·i(·)

max
yi

θi(yi) +
∑
c:i∈c

δ̄ci(yi)−∑
y′i

1

τ
δ̄ci(y

′
i)

(
1

2
uci(y

′
i)− ηci(y′i) + βci

)
− τ

∑
c

min
δc·(·)

max
yc

θc(yc)−∑
i:i∈c

δci(yi)−∑
y′i

1

τ
δci(y

′
i)

(
1

2
uci(y

′
i) + ηci(y

′
i)

)
+ τκ(θ) (9)

We next replace the local singleton/factor problems with their dual problems. This yields the dual problem of
(8):

min
τ≥0,η,β

τ

(
κ(θ)−

∑
i

max
µi

∑
yi

µi(yi)θi(yi)−
∑
c

max
µc

∑
yc

µc(yc)θc(yc)

)
s.t µi ≥ 0, µc ≥ 0,

∑
yi

µi(yi) = 1,
∑
yc

µc(yc) = 1

µi(yi) =
1
2uci(yi)− ηci(yi) + βci

τ
for all i, c : i ∈ c, yi

µc(yi) = −
1
2uci(yi) + ηci(yi)

τ
for all c, i : i ∈ c, yi (10)

Next, consider the objective in Eq. (10):

f(τ, η, β) = τ

(
κ(θ) +

∑
i

min
µi

∑
yi

µi(yi)(−θi(yi)) +
∑
c

min
µc

∑
yc

µc(yc)(−θc(yc))

)
For feasible µ (satisfies the constraints in Eq. (10)), it holds that:

f(τ, η, β) ≤ τ

(
κ(θ) +

∑
i

max
yi
|θi(yi)|+

∑
c

max
yc
|θc(yc)|

)
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(of course, this is true for the optimal µ as well).

Therefore, for all δ satisfying the constraints of Eq. (7), if we can find τ ≥ 0, η, β such that the constraints of
Eq. (10) are satisfied, then by weak duality we have:

‖δ‖1 ≤ max
u

∑
c

∑
i:i∈c

∑
yi

uci(yi)δci(yi)

≤ f(τ, η, β)

≤ τ

(
κ(θ) +

∑
i

max
yi
|θi(yi)|+

∑
c

max
yc
|θc(yc)|

)
(11)

So now we need to find τ ≥ 0, η and β such that µ is feasible.
Notice that in order to tighten the bound we want τ to be as small as possible.

Finally, choosing:

τ = 2 max
i
|Yi|

ηci(yi) =
1

2
uci(yi)−

1

|Yi|
∑
y′i

uci(y
′
i)−

τ

|Yi|

βci = − 1

|Yi|
∑
yi

uci(yi)

yields:

µi(yi) =
1

|Yi|

So the singletons are uniform (and feasible!).
As for the factor variables:

µc(yi) =

1
|Yi|
∑
y′i
uci(y

′
i)− uci(yi)

2 maxi′ |Yi′ |
+

1

|Yi|

Notice that if we sum this over yi we get 1, as required. Also notice that since −1 ≤ uci(yi) ≤ 1 then:

µc(yi) ≥
−1− 1

2 maxi′ |Yi′ |
+

1

|Yi|
≥ − 1

|Yi|
+

1

|Yi|
= 0

as required.
So if we set:

µ̂i(yi) =

1
|Yi|
∑
y′i
uci(y

′
i)− uci(yi)

2 maxi′ |Yi′ |
+

1

|Yi|
µc(yc) =

∏
i:i∈c

µ̂i(yi)

we obtain the desired (feasible!) factor marginals.
To conclude, we can use τ = 2 maxi |Yi| in the bound of Eq. (11) to get:

‖δ‖2 ≤ ‖δ‖1 ≤ 2 max
i
|Yi|

(
κ(θ) +

∑
i

max
yi
|θi(yi)|+

∑
c

max
yc
|θc(yc)|

)

= 2 max
i
|Yi|

(
σ(0) +

∑
i

max
yi
|θi(yi)|+

∑
c

max
yc
|θc(yc)|

)

≤ 4 max
i
|Yi|

(∑
i

max
yi
|θi(yi)|+

∑
c

max
yc
|θc(yc)|

)
≤ 4Ymaxq‖θ‖∞ ≡

√
h(θ)
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C Proof of Theorem 4.2

In this section we prove Theorem 4.2. For simplicity, we denote wερ = w(µερ) and δερ = δ(µερ).

ε ≥ gρ(w
ε
ρ, δ

ε
ρ)− fρ(µερ) [duality gap bound]

≥ gρ(w
ε
ρ, δ

ε
ρ)− g∗ρ [fρ(µρ) ≤ g∗ρ ∀µρ]

≥ g(wερ, δ
ε
ρ)− g∗ρ [gρ(w, δ) ≥ g(w, δ) ∀w, δ]

≥ g(wερ, δ
ε
ρ)− g∗ −

ρ

2
h [Theorem 4.1]

D Efficient Implementation

In this section we provide details on the implementation of Algorithm 1. Specifically, the update in line 15 of
Algorithm 1 maintains primal quantities: w = Ψµ and δ = Aµ. In order to do this efficiently, we exploit the

fact that at each iteration only a single µ
(m)
α block is changed. This means that only wα and δ(m) variables that

depend on µ
(m)
α need to be updated. In particular, for the weights we obtain:

wα ← wα + γΨm,α(sα − µ(m)
α ) ,

where µ
(m)
α is the value before applying the update. Notice that only parameters pertaining to factor α are

changed, so the cost is often much smaller than the full dimension d. As mentioned in Section 5, the algorithm
can be implemented in terms of primal quantities. This requires storing a weight vector for each sample and

factor wm,α = Ψm,αµ
(m)
α . Again, only weights related to the specific factor α need to be stored, so the required

space is often smaller than d. We can then carry out the update above in terms of wm,α instead of Ψm,αµ
(m)
α .

Similarly, for the agreement variables δ we have the update:

Factor c updated: δ
(m)
ci ← δ

(m)
ci +

γ

ρM
Aci

(
sc − µ(m)

c

)
∀i : i ∈ c

Variable i updated: δ
(m)
ci ← δ

(m)
ci −

γ

ρM

(
si − µ(m)

i

)
∀c : i ∈ c

where, as before, µ
(m)
α is the value before updating. Notice that the computational cost of this update depends

on the degree of the factor graph. When a factor c contains many variables in its scope, storing the marginal

distribution µc may be prohibitive. In that case we can store instead only the marginals µ
(m)
ci = Aciµ

(m)
c , which

only requires |Yi| space (this has the same dimension as δci, so we never have to store higher dimensional variables

than the ones already stored). As before, the updates can then be implemented in terms of the compact µ
(m)
ci

and µ
(m)
i values.

Finally, notice that we can compute the optimal step size γ in Algorithm 1 using only the auxiliary variables

wm,α, µ
(m)
ci and µ

(m)
i .

E Computing the Curvature Constant

To complete the convergence rate analysis in Section 5.1 we need to compute the curvature constant C⊗fρ . It is

shown in Lacoste-Julien et al. (2013) that for product domains the global curvature constant is a sum of the

block-wise curvature constants: C⊗fρ =
∑
m,α C

(m,α)
fρ

. Furthermore, the curvature constant of a single block is
bounded in terms of the Hessian as follows:

C
(m,α)
fρ

≤ sup
µ,µ′∈S,

(µ′−µ)∈S(m)
α ,

z∈[µ,µ′]⊆S

(µ′ − µ)>∇2f(z)(µ′ − µ) ,
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To use this bound, we compute the Hessian for our problem12 Eq. (5): ∇2
µ = λΨ>Ψ + ρA>A, which is constant

in µ. Using arguments similar to Lemma A.2 in Lacoste-Julien et al. (2013), we obtain:

C
(m,α)
fρ

≤ sup
µ,µ′∈S,

(µ′−µ)∈S(m)
α

(µ′ − µ)>
(
λΨ>Ψ + ρA>A

)
(µ′ − µ)

≤ λ sup
µ,µ′∈S,

(µ′−µ)∈S(m)
α

‖Ψ(µ′ − µ)‖22 + ρ sup
µ,µ′∈S,

(µ′−µ)∈S(m)
α

‖A(µ′ − µ)‖22

≤ 4λ sup
u∈ΨS

(m)
α

‖u‖22 + 4ρ sup
v∈AS(m)

α

‖v‖22

≤ 16R2

λM2
+

4R̂2

ρM2

where maxm,α,yα ‖φα(x(m), yα) − φα(x(m), y
(m)
α )‖2 ≤ 2R is the maximal feature difference, and R̂2 = 1 +

maxm,α,yα
|Yc|
|Yi| is the maximal number of marginalized assignments.

Finally, we have:

C⊗fρ =
∑
m,α

C
(m,α)
fρ

≤ 4Mq

(
4R2

λM2
+

R̂2

ρM2

)
= O

(
q

M

(
1

λ
+

1

ρ

))
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