
Efficient Structured Prediction with Latent Variables for General
Graphical Models

Alexander G. Schwing aschwing@inf.ethz.ch
Tamir Hazan tamir@ttic.edu
Marc Pollefeys pomarc@inf.ethz.ch
Raquel Urtasun rurtasun@ttic.edu

Abstract

In this paper we propose a unified frame-
work for structured prediction with latent
variables which includes hidden conditional
random fields and latent structural support
vector machines as special cases. We describe
an approximation for this general structured
prediction formulation using duality, which
is based on a local entropy approximation.
We then derive an efficient message pass-
ing algorithm that is guaranteed to converge,
and demonstrate its effectiveness in the tasks
of image segmentation as well as 3D in-
door scene understanding from single images,
showing that our approach is superior to la-
tent structural support vector machines and
hidden conditional random fields.

1. Introduction

In the past few years, structured models have become
an important tool in many application domains such
as natural language processing, computer vision and
computational biology. While these models typically
assume a supervised setting (i.e., one has access to
fully labeled input-output pairs), existing applications
can benefit largely from the use of weakly labeled data.
In computer vision, for example, we might want to
segment an image by classifying each pixel into a se-
mantic category, however, gathering annotated data is
a very expensive process (i.e., it takes several minutes
to annotate a single image). The use of weakly anno-
tated data is even more important in domains such as
medical diagnosis, as observing all labels might not be
possible (e.g., if a hospital does not have access to a
particular test/procedure).

Several structured prediction frameworks have been
developed to deal with weakly labeled information.
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The most notable examples are hidden conditional
random fields (HCRFs) (Quattoni et al., 2007) and
latent structural support vector machines (LSSVMs)
(Yu & Joachims, 2009). Both approaches are framed
as regularized surrogate loss minimization tasks, and
treat the missing annotations as hidden variables.
They achieve good performance when it is possible to
compute the maximum a-posteriori (MAP) estimate or
the partition function exactly. Unfortunately, this is
only possible for a few special cases, e.g., models with
sub-modular energies or models with low tree-width
graphs, which are not very common in practice. To
deal with cyclic graphs HCRFs and LSSVMs usually
resort to approximate inference algorithms and heuris-
tics regarding the stopping criteria. This can, however,
significantly harm their performance as guarantees re-
garding valid cutting planes and decreasing the cost
function at each iteration are no longer possible.

In this paper we first show that HCRFs and LSSVMs
are instances of a more general framework that we re-
fer to as structured loss minimization with latent vari-
ables. We then construct an approximation for this
general structured prediction formulation, using dual-
ity, based on a local entropy approximation and derive
an efficient message-passing algorithm that is guaran-
teed to converge for any type of potential and graphi-
cal model structure. We demonstrate the effectiveness
of our approach on a synthetic segmentation task, as
well as in the challenging vision task of inferring the
3D scene layout from single images, and show that our
approach significantly outperforms LSSVM in terms
of performance and HCRF in terms of speed, being
35 times faster. Additionally, for the 3D scene un-
derstanding task we show that state-of-the-art results
can be obtained while utilizing only a subset of the
annotations used by existing approaches.

In the following, we first derive our unified framework
which contains HCRFs and LSSVMs as special cases
(Sec. 2). We then describe our approximation (Sec. 3)
and message passing algorithm (Sec. 4), followed by
our experimental evaluation and a discussion.
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2. Loss minimization with latent
variables

In this section we propose a general framework for loss
minimization with latent variables. Consider the set-
ting where X is the input space (e.g ., an image or a
sentence) and S is a structured label space (e.g ., an
image segmentation or a parse tree). Note that S can
depend on the example x ∈ X . For clarity of notation
we dropped this dependency while noting that neither
the derivation nor our implementation have this re-
striction. Let φ : X × S → RF denote a mapping
from input and label space to an F -dimensional fea-
ture space. We are interested in finding the parameters
w ∈ RF of a log-linear model, which best describe the
possible labelings s ∈ S of x ∈ X , i.e.,

pw(s|x) ∝ exp
(
w>φ(x, s)

)
. (1)

In this paper, we tackle the weakly supervised setting,
where we are given a training set D = {(xi, yi)Ni=1}
containing N pairs, each composed by an input x ∈ X
and some partially labeled data y ∈ Y ⊆ S. For every
training pair, we divide the label space S = Y×H into
two non-intersecting subspaces Y and H and refer to
the missing information h ∈ H as hidden or latent.

For many applications, we can construct a loss func-
tion `(x,y)(s) which compares a configuration s with
the labeled data (x, y) ∈ D, providing a measure for
the fitness of the estimate. We incorporate this loss
function in learning by considering the distribution

p(x,y)(s|w) ∝ exp(w>φ(x, s) + `(x,y)(s)) (2)

Intuitively it places more probability mass on those
parts of the space S that have a high loss, forcing the
model to learn in a more difficult setting than the one
encountered at inference, where the loss is not present.

A maximum likelihood approach aims at finding model
parameters w which assign highest probability to the
data D. As we have no information available for the
unobserved space H we marginalize it out, i.e., we
average over all possible hidden states. Therefore, we
define the loss-augmented likelihood of a prediction
ŷ ∈ Y when observing the pair (x, y) as

p(x,y)(ŷ|w) ∝
∑
ĥ∈H

p(x,y)(ŷ, ĥ|w) =
∑
ĥ∈H

p(x,y)(ŝ|w).

(3)
Assuming the data to be independent and identically
distributed (i.i.d.), our goal is to minimize the nega-
tive log-likelihood − ln[p(w)

∏
(x,y)∈D p(x,y)(y|w)] with

p(w) ∝ e−‖w‖
p
p being a prior on the model parameters.

As a result, the negative log-likelihood is a difference

of convex terms

C

p
‖w‖pp +

∑
(x,y)∈D

(
ln
∑
ŝ∈S

exp
(
w>φ(x, ŝ) + `(x,y)(ŝ)

)
−

− ln
∑
ĥ∈H

exp
(
w>φ(x, (y, ĥ)) + `c(x,y)((y, ĥ))

) . (4)

with the first term being the sum of the log-prior and
the logarithm of the partition function. We take the
loss of a ground truth configuration `c(x,y)((y, ĥ)) =

`(x,y)((y, ĥ)) ≡ 0, independent of any estimate ĥ. To
control the variance of the log-linear probability model
we follow (Hazan & Urtasun, 2010; Pletscher et al.,
2010) and introduce a temperature parameter ε, i.e.,

C

p
‖w‖pp +

∑
(x,y)∈D

(
ε ln
∑
ŝ∈S

exp

(
w>φ(x, ŝ) + `(x,y)(ŝ)

ε

)
−

−ε ln
∑
ĥ∈H

exp

(
w>φ(x, (y, ĥ)) + `c(x,y)((y, ĥ))

ε

) . (5)

Importantly, ε defines an entire family of structured
prediction tasks with latent variables. For ε = 1
we obtain the maximum likelihood (HCRF) frame-
work, while ε = 0 results in the max-margin formu-
lation for latent variables (LSSVM) minw

C
p ‖w‖

p
p +

maxŝ(w
>φ(x, ŝ) + `(x,y)(ŝ)) − maxĥ(w>φ(x, (y, ĥ)) +

`c(x,y)((y, ĥ))). Note that ε → 0 smoothly approxi-
mates the max-function via the soft-max.

3. Approximate latent structured loss
minimization

The unconstrained minimization problem in Eq. (5)
w.r.t. w is challenging due to the fact that it involves
a sum of convex and concave terms containing expo-
nentially sized sums. In order to make the minimiza-
tion more tractable, we follow (Yuille & Rangarajan,
2003) and upper-bound the concave part via a mini-
mization over a set of dual variables subsequently re-
ferred to as q(x,y)(h). This results in a convex dual
and a non-convex bi-linear term as described in the
following claim.

Claim 1 The function

C

p
‖w‖pp +

∑
(x,y)

(
ε ln
∑
ŝ∈S

exp

(
w>φ(x, ŝ) + `(x,y)(ŝ)

ε

)
−

−εH(q(x,y))− Eq(x,y) [w
>φ(x, (y, ĥ)) + `c(x, (y, ĥ))]

)
, (6)

convex in w and q(x,y) separately, is an upper bound on
Eq. (5),∀q(x,y)(h) ∈ ∆, with ∆ the probability simplex,
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Program 1 Approximated structured prediction with latent variables

min
d,λ,w

C

2
‖w‖22 +

∑
(x,y)∈D

(∑
i∈S

εci ln
∑
si

exp

(
φ(x,y),i(si)−

∑
α∈N(i) λ(x,y),i→α(si)

εci

)
+

+
∑
α∈E

εcα ln
∑
sα

exp

(
φ(x,y),α(sα) +

∑
i∈N(α) λ(x,y),i→α(si)

εcα

))
−

−
∑
r

wr

∑
(x,y)

∑
i∈Y

φr,i(x, yi) +
∑
i∈H,hi

φr,i(x, hi)d(x,y),i(hi) +
∑

α∈E,hα

φr,α(x, (y, h)α)d(x,y),α(hα)


−
∑
(x,y)

 ∑
i∈H,hi

`c(x,y),i(x, hi)d(x,y),i(hi) +
∑

α∈EH,hα

`c(x,y),α(x, (y, h)α)d(x,y),α(hα)


−
∑
(x,y)

(∑
i∈H

εĉiH(d(x,y),i) +
∑
α∈EH

εĉαH(d(x,y),α)

)

s.t.
∑
hα\hi

d(x,y),α(hα) = d(x,y),i(hi) ∀(x, y), i ∈ H, α ∈ N(i), hi ∈ Si

d(x,y),i, d(x,y),α ∈ ∆

f3



f2

{
f1



 := d(x,y) ∈ C(x,y) ∀(x, y) ∈ D

H the entropy and E the expectation w.r.t. the stated
distribution. The bound holds with equality for that
q∗(x,y)(h) minimizing this cost function (Eq. (6)).

Proof: In supplementary material

For many real-world applications, the program in
Claim 1 involves sums over exponentially sized sets
S and H. They are exponentially sized as the ob-
served and unobserved labels y = (si)i∈Y ∈ Y and
h = (si)i∈H ∈ H are often tuples with elements si ∈ Si
taking |Si| discrete states. Note that S = Y ∪H, with
product spaces Y =

∏
i∈Y Si and H =

∏
i∈H Si. But

the features usually describe interactions only between
smaller subsets of random variables

φr(x, s) =
∑
α∈Er

φr,α(x, sα) +
∑
i∈Sr

φr,i(x, si), (7)

where Er and Sr denote the sets of factors and vari-
ables, and S =

⋃
r Sr. Note that each feature is de-

scribed by a bipartite factor graph Gr with nodes orig-
inating from the variable set Sr and factors from Er.
An edge connects a single node i ∈ Sr to a factor
α ∈ Er iff i ∈ α. Consider the factor graph G =

⋃
r Gr

where we define the set of neighbors N(i) := {α : i ∈
α, ∀ α ∈ E} and N(α) := {i : i ∈ α, ∀ i ∈ S}.

In many applications the loss functions ` and `c fac-
torize in a similar fashion and are easily introduced in
the graphical model G, i.e., `(x,y)(s) decomposes into
local terms `(x,y),i(si), ∀i ∈ S and interaction terms

`(x,y),α(sα) ∀α ∈ E, whereas `c(x,y)(ĥ) is structured

according to the locally defined variables `c(x,y),i(ŝi),

∀i ∈ H and `c(x,y),α((y, ĥ)α).

We make use of the local structure of features and loss,
and approximate the intractable function in Claim 1.
In particular, let the probability distribution q(x,y)(h)
be described by local beliefs d(x,y),i(hi) ∈ ∆ and fac-
tor beliefs d(x,y),α(hα) ∈ ∆. We approximate the
marginal polytope by a local one using the marginal-
ization constraints

∑
hα\hi d(x,y),α(hα) = d(x,y),i(hi)

∀(x, y) ∈ D, i ∈ H, α ∈ N(i), hi ∈ Si. We introduce
counting numbers ĉi and ĉα to allow for more flexibil-
ity in the approximation. To further obtain a tractable
approximation for the partition function over S we ap-
proximate its Legendre transform, an entropy ranging
over s ∈ S, via local terms. As those local terms are re-
quired to fulfill marginalization constraints for global
consistency in the dual domain, we obtain Lagrange
multipliers λ(x,y),i→α(si) ∀(x, y) ∈ D, i ∈ S, α ∈ N(i)
and si ∈ Si on the graph G for the primal formula-
tion. Note that those Lagrange multipliers are often
interpreted as messages. For generality of the entropy
approximations we again allow for counting numbers
ci and cα. We now formally state our approximation.

Theorem 1 The approximation of the program in
Eq. (6) takes the form given in Program 1 where
φ(x,y),i(si) = `(x,y),i(x, si) +

∑
r:i∈Sr wrφr,i(x, si) and

φ(x,y),α(sα) = `(x,y),α(x, sα) +
∑
r:α∈Er wrφr,α(x, sα).

Proof: In supplementary material

4. Message Passing Algorithm

Before deriving an algorithm for solving Program 1,
we begin by discussing the properties of the approxi-
mation. For counting numbers and annealing factor ε
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larger than zero, it is jointly convex in the messages
λ(x,y),i→α(si) ∀(x, y) ∈ D, i ∈ S, α ∈ N(i), si ∈ Si
and the model parameters w. It is also jointly con-
vex in the messages and the beliefs d(x,y),i ∀i ∈ H and
d(x,y),α ∀α ∈ EH, but not jointly convex when opti-
mizing for both the weights and the beliefs. Cycling
through blocks of variables and updating them in a
block-coordinate descent manner is not guaranteed to
converge as we cannot fulfill pseudoconvexity in every
pair of coordinate blocks. Similar to other latent vari-
able frameworks we can obtain convergence guarantees
when employing expectation maximization (EM) or a
concave-convex procedure (CCCP) (Yuille & Rangara-
jan, 2003; Sriperumbudur & Lanckriet, 2009) (or more
generally variational methods discussed, e.g ., in (Jor-
dan et al., 1999)) by separating the cost function into
two functions f1(w, λ) and f3(d), convex in their pa-
rameters and a bilinear term f2(w, d) connecting the
two. We refer the reader to Program 1 for the defini-
tion of these functions. Here λ is the vector of all mes-
sages, d the vector of all beliefs, and C(x,y) ∀(x, y) ∈ D
the set of all marginalization constraints.

Without loss of generality we can assume Program 1 to
be bounded from below. Considering the biconvex cost
function, it is intuitive to alternate between solving for
the beliefs and then performing a gradient step in the
direction of the weights and the messages. Due to the
fact that the program is unconstrained in the messages
and model parameters, one gradient step of the latter
is sufficient. We refer the reader to the supplementary
material for a detailed derivation of the algorithm. In
short, updating the beliefs, i.e., the ‘latent variable
prediction problem’ requires solving∑

(x,y)∈D

min
d(x,y)

f2(w, d) + f3(d) (8)

s.t. ∀(x, y) ∈ D d(x,y) ∈ C(x,y)

for every (x, y) ∈ D independently, hence possibly in
parallel. This problem reduces to a standard (con-
vex) belief propagation task (Hazan & Shashua, 2010)
which is guaranteed to find the global optimum for
strictly positive counting numbers ĉi, ĉα and anneal-
ing factor ε. To update the weights and messages we
are required to decrease the cost function of the fol-
lowing unconstrained program, convex in w and λ:

min
w,λ

f1(w, λ) + f2(w, d). (9)

Similar to the program given in Eq. (8), convergence
is guaranteed for respective counting numbers and an-
nealing factor being strictly positive. More impor-
tantly, for weights w one gradient step of length η
obtained via line search is sufficient for convergence

Algorithm 1 latent structured prediction

repeat
repeat

//to solve latent variable prediction problem
mind f2 + f3 s.t. ∀(x, y) d(x,y) ∈ D(x,y)

until convergence
//message passing update
∀(x, y), i ∈ S λ(x,y),i ← ∇λ(x,y),i

(f1 + f2) = 0
//gradient step with step size η
w ← w − η∇w(f1 + f2)

until convergence

guarantees. A solution for a block-coordinate descent
step ∇λ(x,y),i

(f1 + f2) = 0 w.r.t. λ(x,y),i→α(si) for
(x, y) ∈ D, i ∈ S can be analytically computed jointly
∀α ∈ N(i), si. We briefly state the proposed algorithm
for latent structured prediction in Alg. 1 while pointing
the interested reader to the supplementary material for
details. Some convergence properties of the proposed
algorithm are summarized in the following claim. Note
that more general results can be derived.

Claim 2 Alg. 1 is guaranteed to decrease the cost
function of Program 1 at every iteration and guaran-
teed to converge to a minimum or a saddle point for
ε, ci, cα, ĉi, ĉα > 0.

Proof: In supplementary material

5. Experiments

In this section we demonstrate the effectiveness of our
approach in the tasks of image segmentation as well as
3D scene understanding, and show that our method
significantly outperforms LSSVM in terms of perfor-
mance and HCRF in terms of speed.

Segmentation: Our first task addresses segmenta-
tion of weakly labeled images. This is an interesting
example, as the graphical model contains many loops.
As ground truth we use the 14× 40 sized “ICML” tag
given in Fig. 1. We created a dataset composed of 10
training and 10 test instances, where each observation
x is obtained by adding zero mean, uniform noise on
the ground truth labels yi ∈ Si = {1, . . . , 5}. We em-
ploy F = 2 features, a local potential based on the ob-
servations and a pairwise linear regularization poten-
tial. G is a grid-like graph, typical for many vision ap-
plications. In our experiments, we gradually increase
the amount of missing labels from 0% to 100%, and de-
termine at random which variables are hidden/latent.

We compare our approximated structured prediction
to a standard HCRF and the latent structured SVM
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Figure 1. Segmenting the ICML tag with 90% latent vari-
ables: (left) ground truth and our result, (right) wrong
model learned by LSSVM.

(LSSVM) of (Yu & Joachims, 2009) which uses belief
propagation to solve the respective sub-problems. We
use at most 200 outer iterations and 1000 inner itera-
tions for our approach, 200 outer iterations, 1000 mes-
sage passing iterations, and 20 cutting plane iterations
for LSSVM. For practical reasons the HCRF method
is restricted to only 10 outer iterations, 1000 message
passing iterations and 5 CRF iterations resulting in a
maximum of 50 updates of the model parameters. For
a fair comparison our approach with ε = 1 used 50
outer iterations and 1000 message passing iterations
resulting in a maximum of 50 updates as well. All
algorithms employed the same initialization. For our
framework we additionally vary ε from 0 for the max-
margin formulation to 1 for the maximum-likelihood
formulation. Mean results averaged over 5 runs are
depicted in Fig. 2. Our method results in good predic-
tion for all values of ε, while the LSSVM fails in the
presence of large amounts of latent variables. This is
due to the fact that the cutting planes are not exactly
computable for loopy models ((14 · 40)5 possibilities),
and thus no decrease in the cost function is guaran-
teed. An example of the prediction of our approach
and LSSVM in the presence of 90% latent variables
is illustrated in Fig. 1, where LSSVM learns a wrong
model that favors neighboring pixels to be different.
In contrast, the HCRF performs similarly to our ap-
proach, but it takes on average 213.2min to compute
a single HCRF experiment while only 6.2min are re-
quired for our approach with ε = 1. Since HCRF is
not practical, we focus the rest of the experimental
evaluation on LSSVM.

3D Scene Understanding: Recovering the spatial
layout of indoor scenes from a single image is an impor-
tant problem in applications such as personal robotics
and computer vision. Existing approaches formulate
the problem as a structured prediction task focusing on
estimating the 3D box which best describes the scene
layout. Taking advantage of the Manhattan world as-
sumption (i.e., there exist three dominant vanishing
points vpk, k ∈ {1, 2, 3} which are orthonormal), the
problem can be formulated as inference in a fully con-
nected pairwise graphical model G composed of four
random variables si, i ∈ {1, . . . , 4}. As illustrated in

Figure 2. We illustrate the predictive performance for an
increasing amount of latent variables when averaging over
5 different data sets using identical variance for the noise.
The standard deviation is overlayed.

Fig. 3(a), these variables represent the angles encoding
the rays that originate from the respective vanishing
points. Following existing approaches (Hedau et al.,
2009; Wang et al., 2010; Lee et al., 2010), we employ
F = 55 features based on geometric context (GC) and
orientation maps (OM) and refer the interested reader
to (Hoiem et al., 2007) and (Lee et al., 2009) for respec-
tive details. In particular, our features count for each
face in the cuboid (given a particular configuration of
the layout) the number of pixels with a certain label
for OM and the probability that such label appears
in the face for GC. Performance is measured as the
percentage of pixels that have been correctly labeled
with the corresponding face, i.e., left-wall, right-wall,
front-wall, ceiling, floor.

We first investigate how the layout estimation can ben-
efit from the use of weakly labeled data. To this end
we use a set of fully annotated images, denoted ‘fixed,’
and add a varying number {25, 50, 100} of images with
only 1 or 2 angles labeled, i.e., 75% or 50% missing in-
formation. The randomly chosen unlabeled angles are
treated as latent variables. All results are averaged
over 12 runs, each being trained on a varying portion
of the training set. Learning is performed with pa-
rameters C = 1, ε = 0.01 and all counting numbers
equal to one. The results for 50% and 75% of miss-
ing information are detailed in Fig. 3(b) and Fig. 3(c)
respectively. As expected, the prediction performance
improves as a function of the number of fully labeled
images, but more importantly, the performance also
significantly improves as a function of the amount of
weakly labeled data. Our performance also increases
as a function of how much supervision the weakly an-
notated images have, i.e., 2 hidden variables outper-
forms having 3 latent variables per image.

In the next experiment we compare our approach to
LSSVM. Again, all results are averaged over 12 runs.
Note that we have to modify the stopping criteria of
LSSVM as we are not guaranteed to find decreasing
steps at each iteration. In the absence of any clear
stopping criterion, we force LSSVM to perform at least
10 outer loops. The results are detailed in Fig. 4, where
we compare pixel-wise prediction performance when
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Figure 3. The parameterization of the 3D scene understanding task is illustrated in (a). Comparing different amount
({25, 50, 100}) of weakly labeled additional information with 50% and 75% missing data in (b) and (c).

fully weakly Error

(Hoiem et al., 2007) 209 0 28.9%
(Hedau et al., 2009) 209 0 21.2%
(Wang et al., 2010) 209 0 22.2%
(Lee et al., 2010) 209 0 18.6%

ours 10 25 (75%) 15.5%
ours 10 50 (75%) 15.0%
ours 10 100 (75%) 14.7%

Table 1. Comparison to state-of-the-art on the layout data
set of (Hedau et al., 2009). 75% of the information is miss-
ing for each weakly annotated image.

adding 25 (column 1), 50 (column 2) or 100 (column
3) weakly labeled data with 50% (row 1) or 75% (row
2) missing information. Note that our approach sig-
nificantly outperforms LSSVM in all settings.

A comparison of our approach to the state-of-the-art
is shown in Tab. 1. Note that great performance is
achieved with a small amount of supervision. Our fully
supervised approach with 200 fully labeled examples
results in a prediction error of 13.6% (Schwing et al.,
2012).

Fig. 5 depicts some improvements achieved by our ap-
proach compared to only using the fixed set of 10
fully labeled training images, as well as LSSVM. For
LSSVM and our approach, we used an additional 100
images with 50% missing annotations. Prediction er-
rors are indicated below the figures. We also provide
illustrations for the image features we employed in the
last two columns, i.e., orientation maps and geomet-
ric context. Interestingly, when trained with only 10
images, the model tends to miss walls and the ceiling.

6. Related Work and Discussion

HCRFs (Quattoni et al., 2007) and LSSVMs (Yu &
Joachims, 2009) are the most common frameworks em-
ployed to deal with latent variable models in struc-
tured prediction problems. The first contribution
of our work described in Sec. 2 and formalized in
Eq. (5) is to unify the aforementioned frameworks.

More specifically, our max-margin formulation (ε = 0)
is identical to the formulation presented by (Yu &

Joachims, 2009) when having p = 2, `c ≡ 0 ∀x, h, ĥ.
The weak-label structural SVM presented in (Girshick
et al., 2011) is obtained when ε = 0 and p = 2. For

ε = 1, p = 2, `c ≡ 0 ∀x, y, ĥ and ` ≡ 0 ∀x, y, ŷ, ĥ we
recover the likelihood formulation presented by (Quat-
toni et al., 2007). For general ε, but without latent
variables, i.e., H = ∅ ∀(x, y), our formulation reduces
to the one presented in (Hazan & Urtasun, 2010) which
generalizes structural SVMs and CRFs. Importantly,
through the ε parameter our work introduces a family
of new latent variable models in structured prediction
that range between HCRF and LSSVM.

The main drawback of previous works (Quattoni et al.,
2007; Yu & Joachims, 2009) is that they rely on com-
puting the MAP estimate or the partition function at
each iteration. In the case of general graphical models,
approximate inference techniques like belief propaga-
tion are employed. The influence of approximate in-
ference algorithms on structural SVMs (Taskar et al.,
2004; 2005; Tsochantaridis et al., 2004) without latent
variables has been investigated by (Finley & Joachims,
2008; Kulesza & Pereira, 2008), where they reported a
“generally poor performance” when combining belief
propagation and structural SVMs. As an LSSVM ap-
proach employs a structural SVM in every iteration,
we expect a similar behavior when combining LSSVM
with belief propagation. This was indeed the conclu-
sion of our experiments in Sec 5. Similar to (Finley &
Joachims, 2008), we found that ties within the solution
mislead LSSVM.

To address efficiency (Komodakis, 2011) suggested to
use a small number of CRF iterations. This, however,
would not have convergence guarantees. Our second
contribution, detailed in Sec. 3, is to directly include
the approximation into the cost function. As a result
we are able to derive a message passing algorithm that
is significantly more efficient and guaranteed to con-
verge. Concretely, we note that our method needs to
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(b) 50 weak labeled (50% latent)
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(c) 100 weak labeled (50% latent)

10 20 30 40 50
14

15

16

17

18

19

fully annotated samples

pr
ed

ic
tio

n 
er

ro
r 

[%
]

 

 

LSSVM (3,25)
ours (3,25)

(d) 25 weak labeled (75% latent)
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(e) 50 weak labeled (75% latent)
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(f) 100 weak labeled (75% latent)
Figure 4. Comparison of our approach with LSSVM, where we measure pixel-wise prediction performance when adding 25
(column 1), 50 (column 2) or 100 (column 3) weakly labeled data with 50% (row 1) or 75% (row 2) missing information.

solve the ‘latent variable prediction problem’ just like
LSSVM or HCRF. However, LSSVM and HCRF also
require to solve the loss-augmented inference problem
in every iteration before performing a parameter up-
date. The latter contrasts our approach, as we only
need a single update on the messages λ before updat-
ing w. In fact, the average runtime for computing a
single segmentation experiment is 213.2min for HCRF
and 6.2min for our approach.

In our experiments we also observe that the loss func-
tion is very important when learning from weakly la-
beled data. In HCRFs, no loss function was proposed.
For LSSVMs the standard structural SVM loss was
applied and adapted by (Komodakis, 2011). (Girshick
et al., 2011) proposed to introduce a second loss func-
tion into the ‘latent variable prediction problem’ while
(Tarlow & Zemel, 2012) investigates the impact of
higher order loss functions. (Kumar et al., 2010) pro-
posed the self paced learning algorithm, which learns
a model based on “easy” examples before gradually
adding more difficult ones. Their formulation is based
on LSSVMs but can also be applied to our framework.

The algorithm is easily parallelized w.r.t. to the data
samples. Our C++ implementation uses OpenMP and
MPI for parallelization in both shared and distributed
memory environments. To parallelize message passing
one could follow (Schwing et al., 2011). The sources
are available on http://alexander-schwing.de.

7. Conclusion

We have proposed a framework that unifies HCRF and
latent structural SVMs. We have then constructed an

approximation of the resulting intractable optimiza-
tion problem using local entropies, and derived an al-
gorithm for general graphs that leverages the graphi-
cal model structure imposed by the features. We have
demonstrated the effectiveness of our approach on a
segmentation task as well as predicting the 3D layout
from single images. We plan to extend this work in
two directions along the lines of (v.d.Maaten et al.,
2011), by addressing non-linear structured prediction
with latent variables and by investigating relations to
deep belief networks.
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